
 

 EEL 4915 - Senior Design 2 
Final Document 

12/8/2020 
 

Pet Connect 
 

A remotely operated pet door system 
 

 
 

Department of Electrical Engineering and Computer Science  
University of Central Florida  

Dr. Samuel Richie  
 
 

Group 10  
 

Michael Choi EE 
Graham Goerg CpE 
Joy Weaver  CpE 
Ryan Flynn CpE 

  

 



 

Table of Contents 
 
1.0 Executive Summary 1 

2.0 Project Description 2 
2.1 Motivation 2 
2.2 Goals and Objectives 3 

2.2.1 General Project Goals 3 
2.2.2 Hardware Goals 3 
2.2.3 Software Goals 4 

2.3 Function 5 
2.3.1 Related Work 5 

2.4 Project Operation Manual 7 
2.4.1 Steps to operate the system: 8 

3.0 Requirements and Specifications 8 
3.1 House of Quality 10 

4.0 Research 11 
4.1 Similar Project 11 

4.1.1 Home Observable Monitoring Entry System (HOMES) 11 
4.1.2 A1 Security System 12 
4.1.3 AA_Good 1 12 

4.2 Hardware Research 12 
4.2.1 Single Board Computers 12 

4.2.1.1 Raspberry Pi 4B 13 
4.2.1.2 ASUS Tinker Board 14 
4.2.1.3 ODROID XU4 14 
4.2.1.4 NanoPi NEO4 15 

4.2.2 Power Supply 17 
4.2.2.1 Batteries 17 
4.2.2.2 AC Power 18 

4.2.3 Printed Circuit Board 19 
4.2.3.1 Composition of a PCB 19 
4.2.3.1.1 PCB Terminology 20 
4.2.3.2 PCB Design Recommendation and Practices for Better Reliability 20 

4.2.4 Motor 22 
4.2.5 Lock 24 
4.2.6 Sensors 25 

4.2.6.1 Motion Sensor 26 
4.2.6.1.1 HC-SR04 Ultrasonic Sensor 26 

 



 

4.6.1.1.2 HC-SR501 PIR Motion Detector 27 
4.2.6.2 Identification Sensors 28 

4.2.6.2.1 RC522 RFID Module 28 
4.2.6.2.2 PN532 NFC RFID Module 29 
4.2.6.2.3 PN5180 NFC RF Module 29 

4.2.7 Security Peripherals 31 
4.2.7.1 Raspberry Pi Camera Board v2 31 
4.2.7.2 Logitech C270 31 
4.2.7.3 Plug and Play Home Studio Adjustable USB Microphone 32 
4.2.7.4 HONKYOB USB Mini Speaker 33 
4.2.7.5 FIYAPOO Mini Portable Speaker 33 

4.2.9 LCD Display 34 
4.2.9.1 Sunfounder LCD 1602 34 
4.2.9.2 Sparkfun SerLCD 35 
4.2.9.3 Uctronics OLED 36 
4.2.9.4 LCD Comparison 37 

4.2.10 LEDs 37 
4.2.10.1 Single Color LEDs 38 
4.2.10.2 RGB LEDs 38 

4.2.11 Wifi Module 38 
4.2.11.1 Raspberry Pi 4B Built-In Wireless 38 
4.2.11.2 Sparkfun ESP8266 39 
4.2.11.3 Adafruit Mini USB 39 
4.2.11.4 Wifi Module Selection 39 

4.3  Software Research 40 
4.3.1     Mobile Application 40 

4.3.1.1 Native Mobile Application 41 
4.3.1.2  Mobile Web Application 41 
4.3.1.3  Hybrid Mobile Application 42 
4.3.1.4  Development Environment 43 

4.3.1.4.1 Android Studio 43 
4.3.1.4.2 React Native 44 
4.3.1.4.3 Flutter 44 
4.3.1.4.4  Development Environment Selection 45 

4.3.1.5 iOS Exclusive Development 45 
4.3.1.6  Android Exclusive Development 46 

4.3.2  Development language 46 
4.3.2.1 Java 47 
4.3.2.2 Dart 47 

 



 

4.3.2.3 JavaScript 47 
4.3.2.4 Development Language Selection 48 

4.3.3 Databases 48 
4.3.3.1 MySQL 49 
4.3.3.2 Firebase 49 
4.3.3.3 MongoDB 51 
4.3.3.4 Database Selection 51 

4.3.4 Wireless Communication 52 
4.3.4.1 Raspberry Pi OS (Raspbian) 53 
4.3.4.2 Socket Programming 53 
4.3.4.3 Google Services Pugin and Firebase SDK 54 
4.3.4.4 Dataplicity 55 

4.3.5 Version Control 55 
4.3.5.1 Git 56 
4.3.5.2 Github 56 
4.3.5.3 Beanstalk 56 
4.3.5.4 Version Control Selection 57 

5.0 Related Standards and Design Constraints 57 
5.1 Related Standards 57 
5.2 Environmental and Economic Constraints 58 
5.3 Social and Political Constraints 59 
5.4 Ethical and Health & Safety Constraints 59 
5.5 Manufacturability and Sustainability Constraints 60 

6.0 Hardware Design Details 61 
6.1 Single Board Computers 62 
6.2 Power 63 
6.3 PCB 65 
6.4 Motor 66 
6.5 Sensors 67 
6.6 Security Peripherals 69 
6.7 LEDs 70 
6.8 LCD 70 

7.0 Software Design Details 71 
7.1 Android Mobile Application 73 

7.1.1 Android Studio 74 
7.1.2 Java Language 74 
7.1.3 Mobile App Flowchart 75 

7.2   Use Case Diagram 77 

 



 

7.3 User Interface Design (UI) - WireFrame 78 
7.4 Class Diagram 78 
7.5 Database 79 
7.6 Security and Authentication 81 
7.7 Wireless Communications 82 

7.7.1 Google Firebase Android SDK 83 
7.7.2 Pyrebase 85 
7.7.3 Socket Programming and Dataplicity 86 

8.0 Prototyping 87 
8.1 Part Acquisition and Bill of Materials 87 
8.2 Software Prototype 88 

9.0 Testing 89 
9.1 Hardware Testing 89 

9.1.1 Printed Circuit Board (Bare board Test) 90 
9.1.2 Power 91 
9.1.3 Motor 92 
9.1.4 RFID Sensor 93 
9.1.5 Ultrasonic Sensor 95 
9.1.6 Audio and Visual 96 
9.1.7 LCD 97 
9.1.8  LEDs 99 
9.1.9 Hardware Testing Checklist 101 

9.2 Software Testing 101 
9.2.1 Registration 102 
9.2.2 Login 103 
9.2.3 Add /Edit /Delete 103 
9.2.4 Push Notification 104 
9.2.5 Mobile App Camera Access 105 
9.2.6 Mobile App Audio Access 106 
9.2.7  User Interface and Gui 107 
9.2.8 Mobile App Database Connection 107 
9.2.9 Raspberry Pi Database Connection 108 
9.2.10 Control System With Raspberry Pi 109 
9.2.11 Read Sensor Information From Raspberry Pi 110 
9.2.12 Integration 111 
9.2.13 Software Testing Checklist 112 

10.0 Administrative Content 113 
10.1 Milestones 113 

 



 

10.2 Budget and Finance 117 
10.3 Responsibilities 118 
10.4 Project Conclusions 121 

11.0 Appendices 122 
11.1 References 122 
11.2 Permissions 123 

 
 
 
 
 
  

 



 

Figures Index 
 
Figure 1:  Similar product Wayzn 6 
Figure 2: Similar product Autoslide 6 
Figure 3: House of Quality 10 
Figure 4: Raspberry Pi 4B GPIO Pinout 13 
Figure 5: ASUS Tinker Board Pinout 14 
Figure 6: ODROID XU4 Board Layout 15 
Figure 7: NanoPi NEO4 Board Layout 16 
Figure 8: Olide Automatic Sliding Door Opener 23 
Figure 9: Linear Actuator 23 
Figure 10: Modern Hook Lock for Sliding Door 24 
Figure 11: Traditional Barn Hook Lock for Sliding Door 25 
Figure 12: HC-SR04 Pinout 26 
Figure 13: HC-SR501 Pinout 27 
Figure 14: RC522 RFID Module Pinout 29 
Figure 15: PN5180 Block Diagram 30 
Figure 16: Sunfounder LCD 1602 Display 35 
Figure 17: Sparkfun SerLCD                                                                                                         36 
Figure 18: Compare UI develop from Native and Mobile Web App                                            42 
Figure 19: MySQL Workbench Example                                                                                      49 
Figure 20: Firebase Console Example                                                                                           50 
Figure 21: JSON Tree Structure Example Code Snippet                                                               51 
Figure 22: Socket Breakdown Example                                                                                        54 
Figure 23: Hardware Overview Flowchart        61 
Figure 24: System Overview Power Distribution based on voltage rails        64 
Figure 25: Pet Connect Schematic Design        65 
Figure 26: Classic Rod Linear Actuator                                                                                67  
Figure 27: DROK 7A 160W H-Bridge Motor Driver                                68 
Figure 28: Motor Control Circuit Schematic                                            68   
Figure 29: HC-SR04 Motion Sensor Schematic                    69 
Figure 30: General Project Flowchart                    73 
Figure 31: Android Mobile App Design Architecture                                75 
Figure 32: Mobile App Flowchart                                            77 
Figure 33: Basic Use Case for Software                    78 
Figure 34: User Interface Design for Mobile Application                    79 
Figure 35: Class Diagram for Software Design                    80 
Figure 36: Database Design Tree                    81 
Figure 37: Sequence Diagram for Application Authentication                    83 
Figure 38: Wireless Communications Diagram                                84 
Figure 39: Software Prototype Images        90 
Figure 40: Linear Actuator Test Setup        95 
Figure 41: Wiring Diagram for HC-SR04 to Raspberry Pi        98 
 

 



 

Tables Index 
 
Table 1: Hardware Requirements and Specifications 8 
Table 2: Software Requirements and Specifications 9 
Table 3: Single Board Computer Comparison 16 
Table 4: Subsystem Power Estimation 17 
Table 5: Motion Detection Sensor Comparison 28 
Table 6: Radio Frequency Identification Module Comparison 30 
Table 7: Camera Peripheral Comparison 32 
Table 8: Microphone Peripheral Comparison 32 
Table 9: Speaker Peripheral Comparison 33 
Table 10: Comparison of Security Peripheral Choices 34 
Table 11: LCD Comparison 37 
Table 12: Wifi Module Comparison                                                                                              40 
Table 13: Comparison for Native, Web, and Hybrid Mobile Application        42 
Table 14: Database Pros/Cons Comparison        52 
Table 15: Related Standards        57 
Table 16: Raspberry Pi GPIO Connections        62 
Table 17: Power Requirement                                                                                                       63 
Table 18: PN5180 to Raspberry Pi Connections        70 
Table 19: Security Peripheral Connections        71 
Table 20: LED to Raspberry Pi Connections        71 
Table 21: LCD 1602 to Raspberry Pi Connections        72 
Table 22 : Table of Android SDK Methods        85 
Table 23 : List of Pyrebase Relevant Functions        86 
Table 24: Isolation Test        92  
Table 25: Continuity Test        93 
Table 26: Linear Actuator Test Summary        96 
Table 27: PN5180 to Raspberry Pi Wiring Table        96 
Table 28: LCD 1602 to Raspberry Pi Wiring Table      100 
Table 29: LCD Message Display per System Operation      101 
Table 30: LED to Raspberry Pi Wiring Table                                                                             102 
Table 31: LED Operation and Behavior Table      103 
Table 32: Hardware Testing Checklist Summary      103 
Table 33: Software Testing Checklist Summary      115 
Table 34: Senior Design 1 Milestones      116 
Table 35: Senior Design 2 Milestones      118 
Table 35: Bill of Material      119 

 



 

1.0 Executive Summary 

According to the American Pet Products Associations (APPA), there are about 8.5 million             
families that own a pet. Many American pet family owners had to leave the home for work and                  
were forced to decide either to find someone to look after their beloved pet or send them to pet                   
care. Hiring someone to look after one’s pet tends to be expensive and undesired as it requires to                  
either invite another person in your household or a spot to and from work. Especially during the                 
COVID-19 pandemic, families will be leaning towards a user-friendly, self-sufficient, and           
affordable option to take care of the pet’s needs. 

The Pet Connect system was designed with convenience and affordability in mind. Auto Pet              
Lock consists of three parts, a collapsible rod-like lock, multiple sensors unit, and mobile              
application. The camera and speaker unit will be placed at a high vantage point typically located                
near the top corners of the sliding door to maximize the area of surveillance. The camera and                 
speaker unit provide the user the capability to call out their pets. The collapsible rod-like lock                
unit installed on the railing of a sliding door will be able to open and close the sliding door                   
through a motor. The collapsible rod-like lock will have a display to indicate the different               
configurations and modes that Pet Connect provides. It is critical to ensure the reliability of the                
collapsible rod-lock unit to keep the safety of the household.  

This report documents the Pet Connect design process. It will first outline the motivation and               
goals of the product. The report will dive into details about specifications and requirements for               
the project. Specifications and requirements like having our system opening and closing a sliding              
glass door and having an application that allows remote use from a mobile phone laid the                
foundation for the team to strive and work towards. The research section includes the ranges of                
choices for each component of the project and justify the reasoning for why the selected               
technology and part was chosen. The paper outlines the constraints and standards that influenced              
the team’s design decisions and directions of the project. This following report includes block              
diagrams, flowcharts, and schematics to illustrate the hardware and software design details.            
Within the hardware design detail section, one will explain the PCB design and power              
management scheme. The software design detail section will dive in specific on the different              
modes the user or owner may utilize through the mobile application. It will explain the logic                
flowchart and state-machine chart to outline the various decisions the product will be making              
with the given data. Moving on, one will be presented a Bill of Materials to list out the necessary                   
components and the manufacturing cost of one Pet Connect system. The paper will explain how               
the product was put through a range of tests in order to validate all requirements and                
specifications declared have been met. The administrative section will present how the            
responsibility and task of this product was distributed, how the budget was divided, and a               
tentative schedule and milestone that the team will use to ensure the development of the project                
will be met.  

1 



 

2.0 Project Description 

Pet Connect gives pet owners a convenient way to let their pets out when they are not at home. It                    
allows people to experience the joy of having a pet even if they are working all day without                  
worrying about the pet “going” in the house and being restless. 

This project is a remotely operated pet door that will allow the owner to open their standard                 
sliding glass door to let their pet out even when they are not at home. When the pet gets close to                     
the door an alert will be sent to the owner’s phone which will then give them the option to                   
unlock and open the door. The pet will be wearing a small device that can be attached to a collar,                    
which allows the sensors on the doorway to recognize the pet is close. For security reasons, a                 
camera will show the user their doorway to make sure that their pet is trying to get out and an                    
intruder is not trying to get in. Once the pet has come back inside the door will be closed and                    
locked by the owner. Our design also includes a speaker and microphone that can be used by the                  
owner to either call the pet inside or call the pet to the door if the owner desires to let the pet out                       
without the pets initiation of the system. With an easy to use mobile app, the user would also be                   
able to set an at home mode that enables the door to open automatically without the approval                 
from the owner. This project description lays out our motivations, goals, objectives, intended             
functionality, and project operation manual for Pet Connect. 

2.1 Motivation 

Many people face the dilemma of having to be away from home for extended periods of time                 
while leaving their pets at home alone. A prime example is going to work each day. With the                  
usual work day starting at nine in the morning and ending at five at night, this leaves the pet                   
stuck in the house for eight hours. Getting exercise and fresh air are an important part of keeping                  
a pet healthy. This can be challenging for owners who come home late, tired from a long day of                   
work. Pet Connect gives the pets a chance to run and enjoy the outdoors in their backyard                 
whenever they feel like it. Not to mention the bigger factor of the pet having to relieve                 
themselves. This would prevent the owner from coming home to a ruined carpet or couch simply                
because their pet could not help themselves while possibly saving them thousands at the same               
time. 

The inspiration for this project also comes from us personally having pets while no one is home                 
for long periods of time. We also wanted to take a different approach to solving this problem as                  
there are products that are automatic pet door flaps. We did not want the user to have to make a                    
hole in their wall to use our product. Opening the entire door instead of a pet door flap gives the                    
user the possibility of getting any size pet they want in the future without worrying about the size                  
of the pet door flap. Thinking about these challenges gives the motivation of our project.               
Additionally, the motivation behind this project comes from wanting to demonstrate the skills             
and experience obtained along the way through our Electrical and Computer Engineering            
programs at the University of Central Florida. 

 

2 



 

2.2 Goals and Objectives 

As with a lot of home technology, our overall goal was to make the user’s life easier while still                   
keeping their house safe. Pet Connect intended to take some of the stress away from pet owners                 
who are away from their house for long periods of time for any reason. We hoped to also provide                   
a more convenient way of letting a pet out back when the owner is home, with the automatic                  
opening feature. At night or for any other reason, the security of the door will also increase with                  
Pet Connect as it will stay locked and prevent the door from even opening in the case of an                   
intruder. 

Going along with making the user’s life easier, was the goal of providing an easy set up and                  
installation. The user will be able to install this on any standard sliding glass door and will not                  
need to cut any holes in the wall like they would with a classic pet flap. They will then place the                     
required sensors by the door, and the camera in a place of their choosing and the hardware setup                  
is complete. Finally, with the easy to use mobile app they can simply register and connect their                 
specific pet to their app and they will be ready to start using the Pet Connect. 

While our product aimed to give the user more convenience, it also sought to keep the pets                 
healthier. Dogs specifically can develop health complications after years of waiting to relieve             
themselves for hours. This can include urinary tract infections, possible urinary cancer, and             
incontinence. Another thing that is important for a dog’s health is exercise. Running around and               
exerting some energy in the fresh air everyday can improve the dog’s hip joints, digestive               
system, and keeps them at a healthy weight. Our project tries to help solve these problems by                 
simply giving the pet some more freedom to go in the backyard as they please.  

2.2.1 General Project Goals 
 
These are the general goals for the overall physical product and its functionality. 
 

● Open and close a standard sliding glass door. 
● Lock the door when not operating. 
● Have an application that allows remote use from a mobile phone. 
● Have a security component that includes audio and visual. 
● Can be installed in 2 hours or less. 
● Universal. Can be moved from one door to another without customization. 
● No user maintenance after installation. 
● Product lifetime of 5 or more years. 
● Internet access for remote operation. 

 
2.2.2 Hardware Goals 
 
In order to achieve all goals and objectives for our product, hardware played an important role.                
We have envisioned a main processing unit working with many peripherals, mostly housed             
within a singular, small footprint or design and tactfully connected externally. The hardware             
goals desired are as follows: 

3 



 

 
● All internal operations of the system will be done with a microcontroller. 
● All power for the system and its peripherals shall be drawn from a single AC electrical                

outlet. 
● Each power requirement will be split internally from the single input. 
● All power design shall be consolidated to a single printed circuit board. 
● The system needs to be able to send and receive signals from a mobile application in                

order for remote operations. 
● The system also needs to be able to send and receive signals from all its physical                

peripherals. 
● The system should detect any entity within one meter of the door via a sensor. 
● Entities within one meter of the door should be identified as an owned pet or not with                 

greater than 90% precision . 
● One way video coverage of the door and entity when in operation is needed for visual                

security measures. 
● Two way audio coverage of the door and entity when in operation is needed for               

communication purposes. 
● When in operation the system shall unlock and open the door to a maximum clearance of                

two feet. 
● When in operation the system shall close the door completely and lock when closed. 
● The system shall have a screen to display operations, modes, and other information             

available. 
● The system shall have an external visual representation of each operation and mode. 

 
2.2.3 Software Goals 
 
With a lengthy list of hardware goals and objectives, there must also be software components               
allowing for communication and compatibility between them. The following list includes all            
software goals and objectives our project needed to make every piece work together as an               
autonomous system as well as for a mobile application that integrates remote operation. 
 

● Entity detection and verification logic based on data received from sensors. 
● Peripheral communication and control logic. 
● Android application for product owners to interact with the system remotely.  
● Application shall receive notifications from the system when initiated by the pet sensors. 
● Application shall be able to initialize the system remotely by the user. 
● Application UI shall show system status. 
● Application UI shall show system mode. 
● Application UI shall display video streamed from the system camera. 
● Application shall output audio received from the system microphone. 
● Application shall have the ability to transmit audio to the system speaker. 
● Application shall allow the user to open and close the door. 
● Application shall allow the user to change the systems mode. 

4 



 

2.3 Function 

The main function of the project is to allow pets to restlessly outdoors while a pet owner is away                   
from home. Like people, pets get bored if there is not enough variety in their lives. In the                  
majority of U.S homes today, pets spend the better part of everyday at home while the pet's                 
owner at work. Often when pet parents come from their busy workday, they are often too                
exhausted to provide the kind of outdoor stimulation and exercise they need. In order to provide                
an outdoor environment that pets need and to accommodate a busy lifestyle for pet parents,               
therefore the important functionality of the system is mobility. The best approach for a pet's               
owner to be able to let their pet out is to use a wireless communication system that allows the pet                    
owner to open and close doors for their pet. Mobile applications provide different modes to set                
up how the pet owner wants the door to be open/locked when the pet approaches the door. This                  
function creates an easy and convenient way for pets to rest outside. 

Another function of the system is to protect the door from scratching or biting from pets.                
Another behavior of most pets is scratching objects. For example dogs often bite or scratch the                
door if they need attention or want to be outside. As a result, it can cause significant damage to                   
the door panel. Prices for repair or replacing new doors can cause homeowners a hundred of                
dollars. Our system includes sensors detected which alert the pet owners when the pet is closed                
to the doorway, the system will notify the pet owner to open the door before the pet attacks and                   
does any damage to the door. 

Moreover, Security plays a big part in this project. Adding the camera in the system allows the                 
pet owner to see pet movement at the doorway, or if the pet is already back inside the home as                    
well as observe when and how the door is operated. If the system is not armed, and the door has                    
been opened. The owner will be noticed through the camera so they can close the door to protect                  
any intruders from entering the home. 

 2.3.1 Related Work 

There is a similar product launch in early 2018 made by Company name Wayzn. This product is                 
currently active in the market. The product has similar functionalities which allow dogs owners              
to convert existing slide glass doors into app-controlled pet doors. However, our goal was to               
have the security component included in the system instead of just compatible with existing one.               
Moreover, we tend to use different sensors and implement the design that can lower the cost to                 
provide affordability. Figure 1 shows a similar product from Wayzn. 

5 



 

 

Figure 1:  Similar product Wayzn 

 

Another similar product called AutoSlide ® - Sliding Glass Door Opener. This product ranges 
from $450 to $750 due to the various selection of sensors. This product has very functionalities 
in which our product will strive towards but this product also will respond to people in addition 
to pets. The interesting function of this product is its capability to open the door at various 
distances. Figure 2 below shows a product from AutoSlide. 

 

Figure 2: Similar product Autoslide  

6 



 

2.4 Project Operation Manual 

Pet automatic door opener is the system that provides the ability to operate the door through                
mobile application. The device allows dog owners to open and close the door anywhere so               
considering portable products that are easy for pet owners in case they are not home. No need to                  
hire a dog sitter to let pets outside or worry about pets does any damage to the door panel when                    
they need to restless. This system is very easy to install and low cost of installation. Mechanical                 
bars can easily attach to existing door panels. Motion sensors shall detect the presence of               
objects. The sensor shall measure objects no farther than 4 feet. Targets can be monitored over                
the full sensor range or restricted within user defined distance range. The object also must be                
large enough for the sensor to detect. RFID tag assists for security to provide accurate data and                 
real-time tracking objects. Sensors are placed into two locations. First inside the mechanical door              
bar that attaches to the bottom of the door panel and second sensor is attached to target objects.                  
In order to meet requirements of compatibility, components selection and common elements are             
vital.  

Signaling between RFID tags and readers is done depending on the frequency band used by the                
tag. Often more than one tag will respond to the tag reader. Collision detection is important to                 
allow reading data, Study shows that “A group of objects, all of them RFID tagged, are read                 
completely from one single reader position at one time.” Therefore, bulk reading can be              
possible, yet intuitive, method for sensor identification. However, under operational conditions,           
bulk reading is not reliable and may lack sufficient precision. This issue is related to the lock                 
system, if the user has multiple pets and plans to use an RFID key to help secure the lock system.                    
One of our requirements is to reduce the cost. It is not guaranteed that using RFID tags can                  
properly read and accommodate multiple keys. Without proper understanding of the use of             
sensor limitation, functionality and security will be inhibited. 

The unit can be mounted to the upper top or lower of the existing door with a motor to pull and                     
push the door to closed or open. Door opening force is the measurement of how many pounds of                  
force are required to open the door. This information can be found in the Americans with                
Disabilities Act Accessibility Guidelines (ADAAG), ICC/ANSI A117.1. The research stated          
that “The maximum forces allowed by the IBC (2003) for an egress door are 15 pounds to                 
release the latch,”. Most of the sliding doors in the residence building have about 12 pounds of                 
weight. Which we are considering using the motor and power that can swing the door to close                 
and open. If there is a custom glass door that has a weight greater than 15 lbs. The system will                    
not operate to open and close the door properly. Our design will comply with section 1010.1.4.2                
Power-operated doors, meaning that the door will be operated by the power. The system shall be                
designed in the event of power failure. This is for users to be aware that in the case of power cut                     
off the lock will become deactivated and the door can be operated in a manual mode. 

Mobile application is the center control for the users to operate the device. The pet owners shall                 
mainly have capabilities to use mobile user interface to control activities, view, and manage the               
device. Research showed that “The significance of the Internet of Things application            
development is the real-time transmission of data” Therefore connectivity is challenging when it             
comes to monitor, process data, and supply information. Push notification and real-time video             

7 



 

camera are essential for users. Poor connectivity will be a major issue to connect mobile devices.                
Therefore, users required strong internet connectivity to proper operate the door and received             
efficient data transmission. 

2.4.1 Steps to operate the system: 

1) Install the unit on the top or lower on existing sliding doors. The unit should be covered and                   
lined up along with the non-leading edge of the door then secure it with the door jam. 

The frame should be tall enough to have room to mount long gear to drive the door back and                   
forward. Position mounted on the unit based on type of the doors. 

2) Installed the gear rack extending from the unit. Measure and cut the rack to match the size of                   
single door panel 

3) Attach the rack with the unit, align the rack to the cogwheel and make sure the rack is engaged                    
with the cogwheel. Sliding door back and forward for testing. Connect the power supply to the                
nearest power outlet. 

4) Place an RFID tag to the pet collar and push the bottom to activate the device. 

5) Installed the application in the mobile phone by first creating an account for login and                
password. Second, create pet data that connects to the RFID tag to link the device. Third, connect                 
wifi to active device connectivity. 

3.0 Requirements and Specifications 
 
Throughout the brainstorming and research process of our design, we have uncovered numerous             
requirements that our system should satisfy and certain specifications consumers would be            
interested in for such a product. Table 1 is a working list of hardware requirements and                
specifications we have put together for the system's core functionality, including hardware and             
software. 
 

 
 
 

8 

Requirement Description Value 

Cost The total cost we want to spend on the 
project. 

≤ $500 

Weight The total weight of the door opening 
mechanism. (Not including 
peripherals) 

 ≤ 10 lbs 



 

 
Table 1: Hardware Requirements and Specifications 

 
In the same way table 2 shows the software specific requirements for our project design. These                
are separated out as we look at different aspects and constraints when creating hardware and               
software requirements. 
 

 
Table 2 : Software Requirements and Specifications 

 

9 

Requirement Description Value 

Dimensions The total weight of the door opening 
mechanism. (Not including peripherals, 
arm retracted) 

10” x 10” x 18” 

Sensor Range Desired distance from door for 
detecting and verifying a pet. 

24” for detection 
18” for verification 

Power Usage The power needed to operate the 
system when active. 

5v 

Requirement Description Value 

Data Upload The time it takes for the database to 
reflect the data that was just written to 
it. 

≤ 3 s 

Data Download The time it takes when the software is 
reading data from the database 

≤ 2 s 

Mode Options The system will give the user three 
different modes to operate on 

3 Modes of Operation 

Video Display The time it takes for the user to see the 
live video display through the mobile 
application. 

≤ 3 s 

Android API Level The minimum API level that the 
mobile application will run on 

Level 16 (Jelly Bean) or later 

Controllability The time it takes for the home system 
to correctly reflect new commands 
from the mobile app. 

≤ 5 s 



 

3.1 House of Quality 

With the use of focus groups and considering based on the user's need, we design target values                 
for each design to meet necessary requirements. The matrix below establishes concrete goals for              
defining customers/users requirements and for the design engineer. Shown below in figure 3 the              
House of Quality for our project categorizes the user requirements financially, by usability, and              
by security. Cost, durability, and maintenance are considered up front financially. Where as ease              
of use, install, smartphone app, and user interface all fall under the usability of the product.                
Lastly, security, smartphone app, and user interface all pertain to the security requirement.  

 

Fig 3: House of Quality 

10 



 

The engineering requirement involves work with an engineering team who were tasked with             
developing the product and ensuring it matches the customer’s needs. Based on the relation              
matrix, our design requirement should have lightweight material which can ease the installation,             
and smaller dimensions that can help save cost of the project. The same logic can also apply to                  
installation time. The power use should also be minimized. The most important features that              
take as prioritized are compatibility and cost. We want our product to have high compatibility to                
support security, ease of use and installation, at the same time support affordability. Moreover,              
compatibility will greatly affect sensor range and response time since three features have up              
arrows and positive correlation. 

4.0 Research 
 
Following our brainstorming sessions we had a general overview of the tasks we wanted our               
product to accomplish. We also had multiple ideas on how to achieve many of these tasks. It was                  
agreed upon that since there are more than one way to accomplish many parts of our product, we                  
should research each part individually, in order to better meet the requirements and specifications              
laid out in section 3. The following research is presented to you categorized by hardware and                
software. We then list the possible solutions for each task, stating their pros and cons. Lastly we                 
will compare them, in order to choose which will best fulfill our requirements and/or              
specifications.  

4.1 Similar Project 

The idea of our project is to enhance the technology for pet owners to support a busy lifestyle.                  
Our goal for our product is to build a system that provides support for usability, security,                
adaptability, and affordability. We begin our research by reviewing previous Senior Design            
Project which can help with our creativity, address any issue, or concern, and enhance our design                
and implementation. We found two similar projects with Door Mechanism related products, both             
projects were conducted to target consumers which are Homeowners and their visitors or pets.              
Those two projects have the same functionality that can improve our implementation of the              
projects and its features. 

4.1.1 Home Observable Monitoring Entry System (HOMES) 

The HOMES project was built in Spring 2015. The senior group members are Colleen Caffey,               
Bruno Calabria, and Ricardo Georges. This project was sponsored by Boeing which budget for              
the system can be supportive for this product. The main purpose of HOMES is for the                
Homeowner to have the ability to see who comes to the door before users continue device                
operation. Facial recognition and fingerprint will grant Homes’ access. This project also includes             
a pet door in the door panel which is the focus for our team in this research. Our product will                    
include a system that can attach to the existing door to allow pets to enter. The difference is our                   
system from HOMES is live video for users to view in real-time instead of camera captures. In                 
addition, our lock system can be operated using Wi-Fi if there is internet connection.  

11 



 

4.1.2 A1 Security System 

Another previous project that has similar functionalities and features is A1 Security System. The              
project was created in Spring 2017; Team members are Timothy Henry, Computer Engineering,             
Brandon James, Computer Engineering, Jonathan Chew, Electrical Engineering. Objective of          
this project to improve security on the door. The system included sensors for motion detection               
and Mobile application to operate lock/unlock the device. This project also includes facial             
recognition, video camera, lock system that can operate the device remotely. Our system will be               
different in terms of two steps verification from Ultrasonic Sensor and RFID tag before push               
notification to the users. Moreover, our Mobile application also will make it available on both               
android and iOS users. 

4.1.3 AA_Good 1 

A previous senior design project with the title and group members’ name are unknown was used                
as a reference for the printed circuit board research section. The following document provided              
valuable insight on the design constraints and printed circuit board guidelines to adhere in order               
to ensure the best quality. The following project is a portable and affordable blind spot detector                
for large vehicles like a truck. Although the functionality of this project differs from our project,                
this documentation is a good reference on research material and reference document. 

4.2 Hardware Research 

Hardware is considered to be all the physical components involved in building our project              
design. This section will be filled out with the individual research for all hardware used in our                 
design. Some of the main hardware components include single board computers, power input,             
printed circuit boards, the motor and door locking mechanism. Some other hardware components             
are the peripherals of the system. These peripherals are motion sensors, identification sensors,             
LED’s, LCD’s, and audio / visual input and output. 
 
4.2.1 Single Board Computers 
 
During our brainstorming process we originally thought that our design would only require a              
microcontroller to handle all system processing. With the need to include a security element that               
includes video streaming, it was quickly discovered that in order to handle the bandwidth and               
data needs for image processing on top of other functionality, microcontrollers were not             
sufficient. Our research helped us discover single board computing and the vast “do it yourself”               
community it built. 
 
Single board computers are much more than just a microprocessor, housing a complete computer              
on a small board, including memory, input/output, power, and more. The single board computer              
can be seen as “the brain” of our design and will be used to control all operations of our system                    
and communicate to its peripherals. The following is a list of single board computers considered               
for our design. 
 

12 



 

4.2.1.1 Raspberry Pi 4B 
 
The Raspberry Pi 4B is the newest model in the series, replacing the Raspberry Pi 3 in June                  
2019. It offers better processor speed, multimedia performance, more memory, and more            
connectivity compared to the Raspberry Pi 3 boards. It also retains backwards compatibility with              
only slightly increasing power consumption. The Raspberry Pi 4B offers Broadcom BCM2711,            
Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz and 2, 4, or 8GB LPDDR4-3200               
SDRAM. For our project the 4GB RAM would be able to operate with ease. The Pi 4 also comes                   
with built in 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE or wireless                
communication. The Raspberry Pi 4 would offer us multiple ways of peripheral communication             
via 2 USB 3.0 ports; 2 USB 2.0 ports a 40 pin GPIO header, 2-lane MIPI DSI display port,                   
2-lane MIPI CSI camera port, 4-pole stereo audio and composite video port and more. On top of                 
general input and output devices, the GPIO pins can be used with PWM, SPI, I2C, and Serial                 
functions. The Pi 4 power acceptance is 5V DC via USB-C connector (minimum 3A*) or 5V DC                 
via GPIO header (minimum 3A*). The Raspberry Pi 4 starts at a price of $35. Figure 4 depicts                  
the GPIO layout for the Raspberry Pi 4B. 
 
 

 
Figure 4: Raspberry Pi 4B GPIO Pinout with permission from RapsberryPi.org 

 
 
The Raspberry Pi 4 would be a great choice for our design because it has more than enough                  
memory, processing speed, and peripheral support for our proposed system. The Raspberry Pi             
also has a huge 3rd party and community support. It is the top choice for DIY projects and is                   
advertised as “Your tiny, dual-display, desktop computer…and robot brains, smart home hub,            
media centre, networked AI core, factory controller, and much more.” Although the Raspberry Pi              

13 



 

4B has everything we need for our design, it also has a lot of capabilities we don’t need or will                    
be using. This makes the purchase price more expensive than what is needed, but also allows                
room for more implementation and design expansion. 
 
 
 
4.2.1.2 ASUS Tinker Board 
 
The ASUS Tinker Board is another single board computer that boasts an ultra small form with                
class leading performance. The Tinker Board offers a quad-core ARM-based processor Rockchip            
RK3288 @ 1.8GHz and 2GB of LPDDR3 dual-channel memory. Tinker Board features            
numerous connectivity options, including a 40-pin GPIO, a DSI MIPI and CSI MIPI connection,              
GBit ethernet, Wi-Fi and Bluetooth controller, HDMI output, and four USB 2.0 ports. The              
Tinker Board comes with a heatsink included and pricing starts at around $70. 
 
The Tinker Board offers a small design and fast CPU which can be useful since our design                 
requirements include a physical size maximum. It also has enough peripheral support to cover all               
design aspects of our project. The initial price point for the Tinker Board is high compared to the                  
others and our project does not require high processing speeds. The Tinker Board is also limited                
to 2GB RAM, and USB 2.0 which might be a problem with the security peripherals in our                 
design. Figure 5 depicts the GPIO layout for the ASUS Tinker Board. 
 
 

 
 

Figure 5: ASUS Tinker Board Pinout (Pending permission from tinkerboarding.co.uk) 
 
4.2.1.3 ODROID XU4 
 
The ODROID XU4 was built on open source software and designed specifically to support              
android, but also supports Linux. It offers a Samsung Exynos5422 Cortex-A15 2Ghz and             
Cortex-A7 Octa core CPUs, Mali-T628 MP6(OpenGL ES 3.1/2.0/1.1 and OpenCL 1.2 Full            

14 



 

profile), 2GB LPDDR3 RAM PoP stacked. The XU4 has connectivity through 2 x USB 3.0               
Host, 1 x USB 2.0 Host, Gigabit Ethernet port. The ODROID XU4 also comes with a mounted                 
cooling fan and has a 30 pin GPIO and starts at around $60. 
 
The ODROID XU4 has the fastest CPU speed so far and is smaller than the Raspberry Pi 4B.                  
The XU4 also has less connectivity than the other single board computers and has what seems to                 
be smaller community support for DIY and IoT projects. The higher price also accounts for the                
included cooling fan, a feature we do not envision needed in our design. The board layout for the                  
ODROID XU4 is shown below in figure 6. 
 

 
Figure 6: ODROID XU4 Board Layout with permission from hardkernal.com 

 
4.2.1.4 NanoPi NEO4 
 
The NanoPi NEO4 is a RK3399 SoC based ARM board with Dual-Core Cortex-A72(up to              
2.0GHz) + Quad-Core Cortex-A53(up to 1.5GHz) and 1GB DDR3-1866. For connectivity the            
NEO4 has an onboard 2.4G wireless module, a single USB3.0, 2 x USB2.0, a 40 pin GPIO and                  
more. The NanoPi NEO 4 starts at around $50. 
 
Again this single board computer was considered due to its physical size and comparable              
computing and connectivity. Although it is faster and almost half the size of a Raspberry Pi 4B it                  
does lack in other ways. It is limited to only 1 GB RAM and has fewer USB ports. It is also                     
limited to 2.4G WiFi. While the connectivity and slower WiFi are worse than the others, the                
NEO4 still has enough to implement our design. The real drawback is the 1GB RAM, which we                 
do not see being able to handle our security peripherals. The board layout for the NanoPi NEO 4                  
is shown below in figure 7. 

15 



 

 

 
Figure 7: NanoPi NEO4 Board Layout (Permission pending from friendlyarm.com) 

 
The major factors in choosing our single board computer came from our requirements and              
specifications. The cost of a single board computer is a huge factor, due to the direct connection                 
to the overall product cost. We are also looking to design a compact product, so the board size is                   
important. Our design includes many peripherals that will require USB connections and possibly             
a sizable GPIO structure. From our requirements we must have wireless communication to the              
internet of things, so WiFi connectivity and speed are important to us. Lastly processing speed               
and memory are important to the system design, which is directly affected by all our connected                
peripherals, such as audio and video. Table 3, shown below, is a comparison of the researched                
single board computers and their specifications related to our requirements. 
 

 
Table 3: Single Board Computer Comparison 

 

16 

 Raspberry Pi 4B ASUS Tinker Bd ODROID XU4 NanoPi NEO4 

Cost $35 $70 $60 $50 

Size 88 x 56 x 20 mm 86 x 54 x 18 mm 83 x 59 x 18 mm 60 x 45 x 18 mm 

IO 
Component
s 

2 USB 3.0  
2 USB 2.0 
40 pin GPIO 
2.4 GHz and 5.0 
GHz 802.11ac 
WiFi 

4 USB 2.0 
40 pin GPIO 
2.4 GHz 802.11 
b/g/n Wi-Fi 

2 USB 3.0  
1 USB 2.0 
30 pin GPIO 
2.4 GHz 802.11 
b/g/n Wi-Fi 

1 USB 3.0  
1 USB 2.0 
40 pin GPIO 
2.4GHz 802.11 
b/g/n Wi-Fi 

CPU 4 x 1.5GHz 4 x 1.8GHz 4 x 2GHz + 
 4 x 1.4GHz 

2 x 2Ghz + 
 4 x 1.5GHz 

RAM 2,4,8 GB 2GB 2GB 1GB 



 

4.2.2 Power Supply 
 
Determining a suitable power system for this project stems from understanding the electrical             
components within the system and the requirements. The microcontroller and other electrical            
devices in our design will require DC voltage that can be obtained either through an AC-DC wall                 
power supply or battery. The power supply designed will meet the American standards to ensure               
safe power transfer and to prevent electric hazards. Table 4 presents a clear summary of the                
voltage and current requirement of components on the system. We should consider the             
manufacturer’s recommended value for the components to gain a good estimate to determine an              
appropriate power requirement. 
 

 
Table 4: Subsystem Power Estimation 

4.2.2.1 Batteries 

Battery technologies have been viewed as a solution for supplying power to electronic devices              
that requires movement and mobility. Batteries are made of a combination of earthly elements              
such as zinc, and potassium, and electrolyte. Due to the properties of the combination of these                
elements, they divided into two electrode classes: Anode and Cathode. The Anode is connected              
to the negative end while the Cathode is connected to the positive end of the battery. These two                  
electrode classes and the electrolyte will chemically react to generate an electric current.             
Batteries can often characterize based on the metal used and packaging. There are four basic               
batteries technologies that will be explored: Alkaline, Nickel-Cadmium, Nickel-Metal Hydride,          
and Lithium-ion. 

Alkaline batteries are the most popular and well-known type of batteries. The general usage of               
Alkaline batteries lies within low-drain applications such as flashlight and alarm clocks. Alkaline             
batteries are desired due to its high energy densities. Although alkaline batteries generally are              
disposed of after a single use, alkaline batteries have longer lifespans compared to all other               
disposable batteries. Another fact is that Alkaline batteries do not contain mercury and any heavy               
metals that would harm the environment. The drawback of alkaline batteries is its high internal               
resistances which restricts the current flow, drops voltage and creates a large heat dissipation. 

Nickel-Cadmium batteries are rechargeable batteries generally used in laptops, and power drills.            
These batteries are best known for its rechargeability and its ability to maintain voltage very well                
and hold its charge while not in use. A major disadvantage of NiCd batteries are its relative low                  

17 

Components Voltage Max Current 

 Microcontroller  5 V < 300 mA  

 Raspberry Pi 4 5 V  300 mA  

 Motor  12 V 5 A  



 

energy density meaning its short lifespan for a single charge. NiCd batteries are considered              
environmentally unfriendly and require a special location to be properly disposed of. 

Nickel-Metal Hydride batteries are more expensive rechargeable batteries than its          
Nickel-Cadmium counterparts. Although Nickel Metal Hydride are cheaper than lithium ion           
batteries, they have a lower energy density resulting in newer technologies improving efficiently             
and a great understanding of the lithium ion. Another disadvantage of NiMH is its high               
self-discharge (roughly 50% greater than NiCd) and its degraded performance if stored at             
elevated temperature.  

Lithium ion batteries technologies is considered one of the most promising battery technologies             
due to its rechargeability and Lithium-ion’s unique properties. The reason why Lithium-ion            
batteries are gaining a lot popularity within the battery technology is due to its lightest in                
comparison to all other metals, and It has the greatest electrochemical potential and provides the               
largest energy density for its weight. Lithium ion batteries have almost twice the amount of               
energy density compared to standard nickel-cadmium. With no memory issue seen in many NiCd              
batteries, lithium-ion batteries are considered low-maintenance. A major drawback of          
lithium-ion batteries is the requirement to have a protection circuit to ensure the battery functions               
safely. Lithium-ion batteries require to be stored in cool places to prevent aging and are very                
expensive (roughly 40% more in cost in relation to NiCd batteries).  

  

4.2.2.2 AC Power 

In North America, AC power from wall outlets is usually 120V at 60 Hz which defines the                 
alternating current (AC) will oscillate at 60 times per second. We will have to make the                
necessary calculations to determine the power requirements for this project in order to choose              
power supply cords and wall adapter systems. Given that the microprocessors presented in the              
previous section require around 5 V DC to operate, we would need to step down the voltage from                  
wall power of 120 V to 5V and use a rectifier and voltage regulator circuit to create a constant 5                    
DC voltage supplying into the microcontroller. 

It's also important to convert the AC current to DC current from the wall outlet. Based upon what                  
we learned in electronics class, there are two types of rectifiers: half-wave and full-wave              
rectifier. The half wave rectifier is a type of AC to DC converter that rectifies only one-half cycle                  
of an input AC waveform. The placement of the diode will determine either positive or negative                
cycle where the rectification will occur. 

Half-wave rectifier is significantly less efficient compared to a full-wave rectifier because half of              
the input waveform is rectified. On the contrary, a full wave rectifier will convert the entire input                 
waveform to one constant polarity. The advantages of implementing a full-wave rectifier are             
more efficient and maintain a continuous stream of power to the rest of the circuit compared to                 
its half-wave counterpart. As a result, we will be implementing a full wave rectifier to obtain DC                 
current from the wall outlet and supply constant power to the rest of the circuit. 

18 



 

A full-wave rectifier consists of four diodes in a certain arrangement to obtain the DC               
transformation of the AC wall power. One function of the diode is to restrict the polarity of the                  
current, thus creating direct current. In four diode configuration, a pair of diodes will flow direct                
current for one half of the cycle and the other pair of diodes will flow direct current on the other                    
half to ensure a constant flow of direct current.  

Upon evaluation between these two sources, ac power from a wall outlet would best suit for this                 
application as the product is intended to be stationary on the rail of the sliding door. A major                  
advantage of ac power is the low maintenance to the product and its ability to supply constant ac                  
voltage and current to the product.  

4.2.3 Printed Circuit Board 

Engineering design and create printed circuit boards as their primary method of assembling             
modern electronic circuits. PCB provides two important functions. Mechanically, a PCB           
provides housing for all components in a consolidated area. A PCB electrically connects             
electronic components through the usage of conductive pads, tracks, and other conductive            
methods to connect them to a substrate. A PCB can be viewed as a sandwich consisting of one or                   
more insulating layer and one or more copper layer to support the signal traces, powers, grounds,                
and other electrical connections. Traditionally, components were placed on the top layer in a hole               
that goes straight through to the back layer. These components are known as through hole parts.                
Nowadays, surface mount components are the preferred choice due to its smaller footprint and its               
versatility of mounting either on the top or bottom layer. 

4.2.3.1 Composition of a PCB 

PCBs have carefully thought out layers of different materials laminated together with heat and              
adhesive to create one unit. These layers on a PCBs are often composed of different conductive                
and insulative materials to provide a specific function. A general scheme in designing for a               
multilayer PCB is to alternate conductive and insulative layers to electrically isolate each distinct              
layer. The composition of a PCB can be divided into four parts: copper, soldermask, substrate,               
and silkscreen. 

Copper layer is an essential for a PCB as without it the PCB would not be able to conduct                   
electricity or provide electrically connection. This layer is usually a thin copper foil applied onto               
the board with heat and adhesive. Common PCB practices for the copper layer is to apply a                 
copper layer on both sides of the substrate layer. When characterizing a PCB board as a 2-layer                 
board, electrical engineers are referring to the number of copper layers on the board. The               
thickness of the copper layer is determined on the usage. For instance, high power traces may                
require 2 or 3 ounce copper layers while data lines may use 1 ounce copper layers.  

Soldermask is the layer on top of the copper foil which provides the PCB its green color. This is                   
a layer of polymer applied to the copper traces of the PCB for protection against oxidation and                 
external environment. The solder mask layer also provides a separation for closely spaced solder              
pad and prevents accidentally solder bridges. A solder bridge is an unwanted electrical             
connection between two conductor pads or plating by a blob of solder. The solder mask layer has                 

19 



 

an additional benefit for a professional machine. This layer helps the user and professional              
components placer to solder components in the correct place. 

Substrate layer provides the printed circuit board its thickness and rigidness. The FR-4 notation              
is a NEMA grade designation to rate for glass-reinforced epoxy laminate materials like printed              
circuit boards. This grade designation is given for a good strength to weight ratios and almost no                 
water absorption. FR-4 materials are known for their high mechanical values and electrical             
protection and insulating qualities in both dry and humid conditions. 

Silkscreen layer is applied onto the top of the solder mask layer. This top is normally used to                  
identify components, test points, and other marks needed on the board. The Silkscreen layer is               
essential for testability and allows for engineers reliable references. Indicators can be used to              
label exactly where each component will be placed on which pad. Typically silkscreen layer              
color is white, however silkscreen can be found in other colors like black, grey, red and yellow.                 
The silkscreen layer is designed and declared on the board layout. 

4.2.3.1.1 PCB Terminology 

This section describes some common PCB terminology that is used in the Hardware Design 
Detail section.  

● Pad - a portion of exposed copper on the surface of a PCB board that a surface mount 
component is soldered to.  

● Surface mount devices (SMD) - electronic components that are design to mounted 
directly on the PCB 

● Though-hole technology (THT) - leads of components inserted into a drilled hole 
through the PCB and is either soldered onto pads or other methods on top and bottom 
side of the board. 

● Keepout area - an area on the PCB that should be free of components and/or traces . 
Often use a reminder for PCB designers to isolate an area of the PCB for various reasons 
such as thermal, grounding, and mounting constraints. 

● Footprint - an arrangement of pads or through holes used to connect an electrical 
component to a PCB. Also known as land pattern. 

● Copper traces - a signal trace on a PCB and is equivalent to a wire for conducting 
signals. 

● Via(s) - provide a conductive path or an electrical connection for traces and/or pads on 
different layers of a PCB. 

4.2.3.2 PCB Design Recommendation and Practices for Better Reliability  

It’s important to design PCB with the expectation for reliability and long lasting. As a PCB is a                  
critical electrical housing and as an entire system, reliability is important. This section will lay               
out some electrical general knowledge and basic design practices to improve performance and             
reliability of a system. These guidelines help PCB designers and electrical engineers by reducing              
the dimensions of the board thus making the overall electrical design fit in a more compact                

20 



 

board.This section will lay out a brief summary of the recommended techniques. These             
techniques will be used in Section 6.0. 
 
Guildline #1: Keep traces as short and direct as possible 
 
Longer and excess traces means an unnecessary increase in resistance and inductance on the data               
and power lines on the PCB. Maintaining the traces short can ensure the maximum efficiency               
and performance of the PCB. Long traces increases the impedance and increases EMI risks              
particularly affects high-speed digital circuits and analog circuits. 
 
Guildline #2: Group related components in the same circuitry and test points together 
 
Typically electrical designs consist of multiple smaller circuitry. Keep all related components for             
one circuit together since they will be most likely to be connected to one and another. Grouping                 
them will reinforce Guideline #1 by creating short paths and traces between each component.              
Bypass capacitors and resistors are important to group together and place them as close to your                
integrated circuits (ICs) to noise cancellation and reduction properties. 
 
Guildline #3: Utilize decoupling capacitors when needed 
 
Decoupling capacitors play a fundamental role in shielding ICs and components on the board              
from high frequency noise and electromagnetic interference (EMI). Due to nowaday technology,            
capacitors are cheap and robust. These capacitors should be utilized when needed. These             
capacitors also functions to provides other components from any unexpected  
 
Guildline #4: Pick the right component footprint 
 
Finding the grid spacing or component footprint is important in designing an electrically sound              
and reliable printed circuit board.Many of these component footprints may be found through the              
company website. In search of looking for acceptable electrical components, one needs to keep it               
mind of the component footprint for the board layout phase. 
 
Guideline #5: Manage power and ground using a designate power plane 
 
An individual power plane is used to ensure that power will be delivered to its destination on the                  
PCB with minimal impedance and maximum efficiency (minimal or zero drop in voltage). A              
recommendation is to place a power plane to reduce noises that may propagate from the power                
supply from one circuit to another. Power planes will improve the noise isolation between each               
internal circuit within the PCB, improve electromagnetic compatibility (EMC) performance due           

21 



 

to a shorter return path, and reduce the operating temperature of the board thus improving the                
thermal management of the board with a larger current capacity. [ADK] 
 
Guildline #6: Have an even number of board layers on PCB 
 
Odd number of layer stackup does not provide any economic saving and its asymmetry may lead                
to wasping, twisting, and other mechanical structural defects that is detrimental to printed circuit              
boards. It is more beneficial to have a ground plane instead of a power plane for a 2 layer board.                    
One will be seeing a power plane on PCB board design with 4 or more layer stackups. [CAD] 
 
Guildline #7: Use automatic signal routing tool on CAD software with extreme caution  
 
Although this functionality is provided on many CAD software, it is highly not recommended to               
use this feature due to the multiple of design constraints that need to be taken when determining                 
the routing situation. Signal routing on the printed circuit board should be done by the electrical                
engineer or by hand to avoid any undesired coupling and noise interference. A properly designed               
multilayer PCB can eliminate the EMI concerns and be immune to radio frequency fields. A               
function that is recommended is the Design Rule Check function or Design validation function to               
ensure that all functionality and necessary traces are found in the hand placed traces. 
 
Guildline #8: Use the Silkscreen 
 
The Silkscreen layer on the PCB can be used to identify components using reference designators               
and indicators to express on oriented sensitive parts like diodes should be placed. The silkscreen               
is essential to give engineers and humans a frame of reference to understand the board, Testing                
on the PCB will be easier will a well-thought out silkscreen notation. 
 

4.2.4 Motor 

A major component to this project is the mechanical mechanism in serving the sliding door. As                
this project is to improve upon the un-technological or un-smart version pet door, it is imperative                
to select an appropriate mechanism of the locking system to ensure safety of the household and                
functionality of this product. Servo motor is one of the common motors that consists of a DC                 
motor, a potentiometer and a control circuit. Due to servo’s circular rotation, A typical servo               
motor will need to pair with some type of cabling to open and close the sliding door. Figure 8                   
will illustrate how the servo motor can be used to operate a sliding door. This motor would be                  
used on the railing of the sliding door. 

 

22 



 

 

 

Figure 8: Olide Automatic Sliding Door Opener 

Compared to a typical servo motor, a linear actuator or linear servo motor differs from a typical                 
servo motor applied linearly as opposed to rotationally and has a magnetic shaft that extends, and                
contacts depending on the current flow. Depending on the linear servo or actuator, the mechanics               
of the motor can vary. Some linear servo motors have some type of potentiometer that one may                 
connect to a microcontroller to control speed of the shaft while other linear servo motors have                
fixed speed and length once current is applied. For this project, the linear servo or actuator motor                 
seems to be the best choice because opening and closing a sliding door requires a linear                
movement. This linear servo actuator should also have an control input from a microcontroller to               
provide the team more flexibility and control on the motor’s movement.  

 

Figure 9: Linear Actuator  

23 



 

4.2.5 Lock 

Although it is possible to increase the versatility of this product, we are designing this Smart Pet                 
Door to sliding door. With the consideration and understanding that many sliding doors are made               
of see through material such as glass, we designed our design to be minimalist as possible                
without compromising the security of the household and the product’s ability to have full control               
of the door. As many sliding doors may be used as patio doors, it’s important to ensure the                  
security of the home. Therefore, understanding how sliding doors are locked and its mechanics is               
crucial. The main function for this lock is to mechanically open and close the sliding door.                
Security has an important aspect of modern society. With the increasing home invasion and front               
porch package theft, choosing a lock is important to the safety and security of home. There are                 
three lock mechanisms that will be explored: handle/hinge lock, and bar lock. 

Many traditional sliding doors and patio doors will have a barn or hook lock to securely separate                 
the indoor from the outdoor environment. The hook lock usually requires the user to either turn                
or switch the hook off or on the frame of the sliding door to secure it in place. With improvement                    
in home invasion, hook locks for sliding or patio doors are tracked and susceptible. Our product                
will improve security and safety of the household utilizing the strength of the door material to                
protect home invaders from our product. Figure 10 and 11 below shows a modern hook and                
traditional barn hook lock for sliding door. 

 

 

Figure 10: Modern Hook Lock for Sliding Door 

24 



 

 

Figure 11: Traditional Barn Hook Lock for Sliding Door 

Another example of the lock mechanism is Autoslide - Sliding Glass Door Opener. Installing a               
railing to an existing sliding provides greater control of the door. Although there’s a longer               
installment period, the installment of one’s railing system increases the versatility of the product.              
Having control of the railing system allows for one to expand on the functionality of the product.                 
With the railing locking system. The locking mechanism of the door is found within the product                
clamping onto its custom railing and the motor. 

With our product, it is imperative to gain control of the sliding door. As our product does not                  
intend to interact with the original locking system of the sliding door, we intend to create a                 
startup sequence that serves to determine whether the original lock system is enabled by trying to                
open the sliding door. If our product is unable to unlock the door, the user will be notified                  
through the mobile application to disable the locking system. Our product will be placed on the                
railing of the sliding door as opposed to handle, thus preventing intruders from unlocking the               
door despite turning off the power or breaking the motor housing. Our locking mechanism will               
reside in the effectiveness of the linear servo actuator to maintain the integrity of the door. 

4.2.6 Sensors 

During our research we determined that sensors were needed for our design from two of our                
requirements. Those requirements are that the system should detect any entity within one meter              
of the door via a sensor and entities within one meter of the door should be identified as an                   
owned pet or not with greater than 90% precision. We plan on using multiple sensors in                
conjunction with each other in order to satisfy these requirements. The types of sensors needed to                
achieve this are a motion or occupancy sensor and an identification sensor. 
 

25 



 

4.2.6.1 Motion Sensor 
 
A motion sensor or occupancy sensor is a device that detects the presence of an entity that is in                   
the sensor’s range, which is not a part of the baseline. The three main types of sensors used to                   
detect motion that we researched are passive infrared (PIR), ultrasonic, and microwave. Each             
type is very different to the next and has their own ideal environments. 
 
The ultrasonic sensor uses a SONAR technique by using sound waves to detect objects. The               
sensor detects objects by receiving reflected sound waves that were emitted by the device. The               
time elapsed by the sound waves round trip is used to calculate a distance. We can utilize this                  
calculated distance to then determine if an object has moved into the desired activation range. A                
major benefit to using ultrasonic sensors is that they are not affected by external sources such as                 
heat, light, dust, etc. that can often cause false positives for other sensors. 
 
A passive infrared sensor works similarly to an ultrasonic sensor in that it uses reflected waves                
(light instead of sound) to detect an object's presence. The passive infrared sensor detects and               
compares the heat of an object to the heat of its background. The distance a PIR sensor can                  
detect within is usually adjustable by a component on the sensor itself. Since these sensors               
measure heat signatures they are mostly applied in indoor, temperature regulated applications.            
Because of this fact, a passive infrared sensor may not be the best choice for an exterior glass                  
door, where heat and light may be directly cast upon it. 
 
4.2.6.1.1 HC-SR04 Ultrasonic Sensor 
 
The HC-SR04 has a theoretical measuring distance of up to around 450cm, with a practical               
measuring distance around 100cm, and an accuracy close to 3mm. The HC-SR04 also measures              
an area within a 15° angle from sensor facing. It operates at 5 volts using less than 15mA and at                    
a frequency of 40Hz. Below is the pinout for a HC-SR04 ultrasonic sensor. Figure 12 shows the                 
pinot of the HC-SR04, which will be used to communicate with our PCB. 
 

 
 

Figure 12: HC-SR04 Pinout with permission from Arduino.cc 
 
The specifications of the HC-SR04 fit well within our requirement needs as we only want to                
detect motion within 100cm and will be able to provide the power needed. Accuracy does not                
matter to us due to the functionality used is not actually measuring a distance. The measuring                

26 



 

angle is the only slight drawback for this sensor as it restricts where we can physically place it in                   
our design.  
 
4.6.1.1.2 HC-SR501 PIR Motion Detector 
 
The HC-SR501 has a detection coverage range of up to 7 feet from the sensor and within 120°                  
from the sensor facing. It also has a variable input voltage range of 4 to 12 volts, using around                   
65mA of power. It can distinguish object movement from human and animal movement and can               
operate in a temperature range of -20 to +80 Celcius. The HC-SR501 will output a high (3.3v)                 
voltage when detection occurs and it has two operating modes, repeatable and non-repeatable.             
The HC-SR05 board layout and pinout is shown in figure 13. 
 

 
Figure 13: HC-SR501 Pinout with permission from Makerguides.com 

 
This sensor satisfies our requirements for the product design and offers more flexibility in where               
to physically implement the sensor. Furthermore, the fact that this sensor can recognize human              
and animal movement separately from object movement could be useful in our design.             
Unfortunately, the fact that variable external heat can cause false positives will greatly impact              
our decision to use this sensor. Below is a comparison between the two motion sensors talked                
about. 
 
The major factors in choosing our motion sensor came from our requirements and specifications.              
The cost of a motion sensor is important due to the direct impact to the overall product cost. We                   
were also looking to design a compact product, but both sensors are planned to be external, and                 
already have a small footprint. The motion sensor for our design, and the two we have                
researched, will be connected to our system via the GPIO pins. The input voltage of the sensor                 
now becomes an important parameter due to our single board computers GPIO voltage output.              
From our requirements we listed, detection range is important to our design, and the sensor must                
be able to operate efficiently at a distance of one meter. Lastly our design needed to avoid any                  

27 



 

hindrances a sensor might incur when used in a light and heat sensitive area. Below in table 5 is a                    
comparison of the researched motion sensors and their specifications related to our requirements. 
 

 
Table 5: Motion Detection Sensor Comparison 

 
4.2.6.2 Identification Sensors 
 
There are a couple different ways to identify an entity using sensors. The most straightforward               
and simple way is to scan a barcode or QR code. This obviously will not work with the design                   
we have planned. Some other ways are using real time locating systems such as WiFi RTLS and                 
Infrared RTLS. Both of these implementations are too complex of a process to use for the simple                 
design we have. The most commonly used identification sensing available is RFID or radio              
frequency identification. RFID sensors use radio waves to emit and receive signals from their              
associated RFID tags. When a tag receives a signal from the sensor it transmits a signal back                 
consisting of its data, usually an ID number. 
 
4.2.6.2.1 RC522 RFID Module 
 
The RC522 is a 13.56MHz RFID module that supports I2C, SPI and UART. It has an operating                 
voltage of 3.3v at about 20mA (10uA when in powered down mode) and a max data transfer rate                  
of 10MBps. The RC522 has a read range of 5cm. This module comes with a single RFID card                  
that has 1kB of memory. The RC522 can read and write into the card memory and costs around                  
$8. Figure 14 shows the pinout for the RC522 RFID module. 
 
Incorporating this module into our design would satisfy the requirements previously stated. The             
input power and SPI/UART support align with what our possible choices for single board              
computers can provide. The low power mode is also a positive for the RC522. The read range,                 
however, might be a problem. 5cm might not be a large enough range to read a ID card on a pet's                     
collar. 

28 

 HC-SR04 Ultrasonic HC-SR501 PIR 

Cost Owned appx. $5 

Detection Range 480cm, within 15° 213c, within 120° 

Input Voltage 5v 4-12v 

Hindrances vibrations heat and light,  



 

 
 

Figure 14: RC522 RFID Module Pinout with permission from Components101.com 
 
 
4.2.6.2.2 PN532 NFC RFID Module 
 
The PN532 is a slight step up from the RC522. This module is compatible with multiple RF                 
protocols including Mifare 1K, 4K, Ultralight, DesFire cards, and more. The PN532 also             
supports I2C, SPI, and high speed UART. The read range is barely larger than the RC522 with 5                  
to 7cm. It requires 5v input power, and acts as both a reader and writer. The PN532 also supports                   
NFC with Android phones. The price for the PN532 starts at $12. 
 
Again this RFID choice covers all the bases when looking at the requirements for our design.                
The PN532 has more flexibility with the added support for I2C, which would simplify              
implementation of the sensor. The read range of only 7cm is still not what we want for our                  
design. 
 
4.2.6.2.3 PN5180 NFC RF Module 
 
The PN5180 NFC RF Module is an exceptionally integrated high power output NFC utilizing              
contactless communication at 13.56 MHz. The required input voltage is variable at up to 250mA               
to allow for more flexible applications. The Pn5180 also includes a Dynamic Power Control that               
controls current through the antenna and RF power to maximize performance. The module also              
supports 8 different RFID protocols, including ISO/IEC 14443-A up to 848 kBit/s, MIFARE,             
ISO/IEC 14443-B up to 848 kBit/s, and JIS X 6319-4. The PN5180 communicates through SPI               
only and has a read range up to 15cm. The price for the PN5180 starts at around $12. Figure 15                    
shows the PN5180 block diagram and pinout. 
 

29 



 

 
 

Figure 15: PN5180 Block Diagram with permission from Futureelectronics.com 
 
The PN5180 is well equipped for satisfying the design requirements related to our entity              
identification and verification. It supports most, if not all, RFID protocols and does not require               
host controller interaction. It can also be optimized for power using the Dynamic Power control.               
The biggest positive for this module is the read range, allowing for our design to function as                 
desired. Below is a table comparing the PN5180 to the other RFID modules. Table 6 shows the                 
comparison of the different RFID modules researched. 
 
 

 
Table 6: Radio Frequency Identification Module Comparison 

 
 
 

30 

 RC522 PN532 PN5180 

Cost $8 $12 $12 

RFID protocols MIFARE and NTAG Mifare 1K, 4K, 
Ultralight, DesFire, + 

Most  

Communication 
protocols 

I2C, SPI, UART I2C, SPI, High Speed 
UART 

SPI 

Read range 5cm 5 to 7 cm Up to 15cm 



 

 
4.2.7 Security Peripherals 
 
The security element of our design includes having video coverage and two way audio. We will                
require a camera that can provide a live video feed of the immediate area around the door,                 
preferably both inside and outside. We would like to connect the camera to the rest of the system                  
via wire to avoid having to power it separately and to simplify the data transfer. The design is                  
also based on the user being able to listen to the surroundings as well as communicate with the                  
pet if desired, which will require a speaker and microphone. There are many ways to implement                
these three peripherals, either individually or combined.  
 
 
4.2.7.1 Raspberry Pi Camera Board v2 
 
This camera option comes directly from the same makers of the Raspberry Pi. It is a 8 megapixel                  
Sony IMX219 image sensor with a fixed focus lens. The Raspberry Pi Camera Board v2               
connects via CSi interface and offers the ability to take images and video, providing 3280 x 2464                 
pixel for static images, and supporting 1080p30, 720p60, and 640x480p90 video. The software is              
directly supported by the Raspbian OS. The optic size is ¼ inch and pricing is $30. 
 
We like that the camera uses the CSi interface, because it is a great way to transmit pixel data,                   
and is much faster than other data transfer options.The Raspberry Pi Camera Board v2 also has                
great video support, offering higher quality than what is needed for our design. Without a CSi                
ribbon extension, this camera can only be placed within inches of the single board computer.               
Overall this is a good option for our video needs. 
 
 
4.2.7.2 Logitech C270 
 
The C270 is a USB Webcam that comes with an internal microphone. The widescreen HD               
camera has a max resolution of 720p at 30 fps, has a fixed focus lens, automatic light correction,                  
and has a field of view at around 60°. The built in microphone is noise reducing and can pick up                    
sound up to 3m. The C270 also comes with a 5 foot USB 2.0 cable. The price of the Logitech                    
C270 starts at $40. 
 
This option gives us more flexibility with less quality. The camera resolution should be enough               
for what we require from it. It has a decent field of view and a built in microphone which would                    
eliminate the need for a separate audio input peripheral. The 5 foot cable included should be                
enough for an installation that can view the door the way we want. This camera is priced near the                   
middle of the field for similar products. Table 7 shows the comparison of the different cameras                
researched. 
 
 
 

31 



 

 

 
Table 7: Camera Peripheral Comparison 

 
 
4.2.7.3 Plug and Play Home Studio Adjustable USB Microphone 
 
This USB microphone can sense audio in a 360° omnidirectional space up to and beyond 2                
meters. It also provides anti-noise control at a signal to noise ratio of more than -67 dB. This                  
microphone has a working voltage of 4.5v and a cable length of 13.5cm. The price for the USB                  
microphone is $8. 
 
We would only need to include this if we chose a camera that doesn’t already come with a built                   
in speaker. The working voltage of 4.5v is a little worrisome due to the 5v power requirement for                  
the single board computers themselves. If we add too many peripherals that need more power,               
we would then need to add a hub. Despite these concerns the microphone would meet our audio                 
design and requirements. Table 8 shows the comparison of the different microphones researched. 
 
 
 

 
Table 8: Microphone Peripheral Comparison 

 
 
 
 

32 

 Raspberry Pi Camera Board v2 Logitech C270 

Cost $30 $40 

Resolution 1080p30, 720p60, and 640x480p90 720p30 

Interface CSi USB 2.0 

Microphone No Yes 

 Logitech C270 Plug and Play Home Studio     
Adjustable USB Microphone 

Cost $40 $8 

Reception length 3m 2m 

Operating Voltage 4.5-5v 4.5v 



 

4.2.7.4 HONKYOB USB Mini Speaker 
 
The HONKYOB USB Mini Speaker is connected via USB 2.0 and consists of two 0.5W stereo                
speakers. It also comes with a 47 inch cable. The HONKYOB USB Mini Speaker has an                
operating voltage of 5v. The price for this speaker is $14. 
 
If we end up having an externally powered USB hub then this speaker should be a viable option.                  
The length of the cable gives us a lot of flexibility for implementation. Without a powered USB                 
hub this speaker might draw too much power and force us into other peripheral options. 
 
4.2.7.5 FIYAPOO Mini Portable Speaker 
 
This speaker is a portable device with a single 3W speaker. It is connected via a 3.5mm audio                  
jack, has an internal 3.7v rechargeable battery, and comes with a charging cable. This speaker               
provides a signal to noise ratio over 80dB. The price of the FIYAPOO Mini Portable Speaker is                 
$18. 
 
This speaker would allow us to operate USB peripherals without having to compete for power,               
but also has the draw back of needing to be recharged. It also does not come with a cable, so an                     
extender will be needed for physical design purposes. Table 9 shows the comparison of the               
different speakers researched. 
 
 

 
Table 9: Speaker Peripheral Comparison 

 
The major factors in choosing our security peripherals come from our requirements and             
specifications. We need to account for the total cost of all the security peripherals and expect this                 
cost to be a decent portion of the total design budget. Therefore, we must choose wisely between                 
the performances provided and the cost that is associated with them. These security peripherals              
can be internal or external to the main product design, so keeping their sizes in mind should be                  
important to our decision making process. How each security peripheral connects to our single              
board computer is also an important factor to consider, making sure we have enough of a certain                 
connection available. From our requirements we must have one way visual and two way audio               
communication, so we must choose our peripherals in order to meet these needs. Lastly we need                

33 

 HONKYOB USB Mini 
Speaker 

FIYAPOO Mini Portable 
Speaker 

Cost $14 $18 

Interface USB 3.5mm audio jack 

Operating Power 5v via USB 3.7 via external 

Output 2 x 0.5W 3W 



 

to compare how each peripheral will affect the overall system power requirements. Table 10,              
seen below, is a comparison of the researched security peripherals and their specifications related              
to our requirements. 
 

 
Table 10: Comparison of Security Peripheral Choices 

 
4.2.9 LCD Display 

Our design also features a display that can be placed next to the sliding glass door. This is a                   
small screen that aims to not crowd the door with wires too much. This was used to display some                   
basic messages to the user about the system such as when the door is opening, when an entity is                   
detected and the status of the RFID scans. We take a look at the possible options for the design                   
team in this section. 

4.2.9.1 Sunfounder LCD 1602 

The Sunfounder LCD 1602 [SUNF] module consists of a blue background with white display              
text. The option that we were considering has 16x2 possible characters available for us to show                
any message that we might have needed. This runs on a working voltage of 5 V and we had the                    
option to adjust the brightness with a 50k potentiometer. There were other options from the same                
manufacturer such as 20x4 characters. With a size of 80x36x12 mm this was a good option that                 
did not take up a lot of space next to the sliding glass door. 

Another flexible part of this option was the I2C module. Sunfounder also offers the same 16x2                
display with the I2C module already soldered on to the back with header pins. This could have                 
made the connection to the Raspberry Pi easier as we had the option to use I2C communications                 

34 

 Option 1 Option 2 Option 3 Option 4 

Video RPi Camera 
Board v2 

RPi Camera 
Board v2 

Logitech C270 Logitech C270 

Audio In USB 
Microphone 

USB 
Microphone 

Logitech C270 Logitech C270 

Audio Out USB Mini 
Speaker 

Mini Portable 
Speaker 

USB Mini 
Speaker 

Mini Portable 
Speaker 

Total Cost $52 $56 $54 $58 

Connectivity CSi + 2 x USB 
2.0 

CSi + USB 2. + 
3.5mm jack 

2 x USB 2.0 USB 2.0 + 
3.5mm jack 

Power Usage 3 x 5v 2 x 5v + 3.7v 2 x 5v 5v + 3.7v 

Complexity High High Medium Medium 



 

to write the message instead of having to solder and wire up each of the 16 header pins                  
ourselves. Then again this could have also been a drawback as we would be required to use the                  
I2C module and take away some of the design freedom as just getting the display screen by                 
itself. 

This option was appealing because of the features mentioned above and all of the design team                
has experience using this product. The past schematics, board diagrams, and experience could             
decrease the time it takes to implement the display screen if this option is chosen. Figure 16                 
shows Sunfounder LCD 1602 Display.  
 
 

  

Figure 16 : Sunfounder LCD 1602 Display 
 

4.2.9.2 Sparkfun SerLCD 

The Sparkfun SerLCD [SPAR] is another similar sized LCD as the Sunfounder option. With an               
81 x 38 mm device the requirement of having a somewhat small device is met. This also has                  
16x2 characters available for displaying the messages or statuses. The feature that stood out              
about this option is the RGB backlight and the black text. This means that we would be able to                   
make the background of the text red, green, blue, or any color combination of the three. This                 
feature may not be needed but it would allow us to assign different colors to the different                 
operation modes that the system is in. The people at home would then easily be able to see what                   
the system is currently doing 

Another feature with the Sparkfun SerLCD is that it has an Arduino compatible bootloader in the                
AVR ATMega328p on the back. This makes it easy for an Arduino to communicate with the                
LCD screen which was not needed for our purposes. Other communications involve UART, SPI,              
and I2C. However unlike the Sunfounder LCD, there was not an option to have an I2C module                 
soldered on with the part purchase. The screen has a required 3.3 working voltage but is also                 
equipped with a 3.3 voltage regulator that will handle voltages up to 9 volts. 

While this LCD has many great features it also has a higher price. The RGB backlight screen                 
could be a great addition to our design, but simple LEDs alongside the screen could also                
accomplish the same thing. This option would have increased our project cost due to having               
additional features which may not be worth it, especially because we would not be using all of                 
them. Figure 17 below shows the Sparkfun SerLCD. 

35 



 

 

  

Figure 17 : Sparkfun SerLCD 

4.2.9.3 Uctronics OLED 

This display option is an organic light-emitting diode screen rather than a liquid crystal display.               
It is made up of 128x64 pixels separated into 2 yellow rows and 6 blue rows as demonstrated in                   
the example picture. The shape is a smaller square compared to the other two rectangular               
options, measuring in at 27 x 27 x 4 millimeters. Although it is smaller, the 8 rows would have                   
given us more than enough screen space to convey the necessary information. That small size               
could have also brought up a downside of having the letters too small for some users to read. 

The Uctronics OLED [UCTR] needs to use I2C to communicate with the Raspberry Pi and it is                 
advertised as being compatible with the Arduino and the Raspberry Pi. We were not anticipating               
this to be a problem for our design but it did take away from the possible design options with this                    
display board. As with the other two options, the Uctronics OLED board has a support voltage                
between 3.3V and 5V. 

While having a screen that is not too large was important to us, we also needed to think about if                    
we were going to need the 8 possible rows of OLEDs. That along with considering if the users                  
are going to have a hard time seeing the information displayed on this screen compared to the                 
two other larger font LCDs made this option unfavorable. Figure 18 belows shows the Uctronics               
OLED Module.  

  

4.2.9.4 LCD Comparison 

Table 11 below shows a comparison of the three LCDs that were mentioned in this section. We                 
used this table to decide which product was the best option for us to implement in our project.                  
The Sunfounder LCD was familiar to all of the members on the team as it was used in a previous                    
college course at the University of Central Florida. This aspect is not listed in the table but adds                  
an advantage to the Sunfounder option due to a low learning curve. This meant we knew what to                  
expect when it came time to wiring up and programming the LCD to have the output that we                  
wanted. Given that, the Sunfounder LCD is at the top of the list and the choice will be explained                   
more in the Hardware Design section. 

36 



 

 

 
Table 11 : LCD Comparison 

 

4.2.10 LEDs 

Along with the display screen that was talked about in the previous section, we were also                
considering LEDs to go along with the messages that would be displayed on the LCD screen.                
This would be placed along one of the sides of the LCD screen so they can easily see when an                    
object is detected or when the RFID sensors are scanning. If the Sparkfun SerLCD was selected                
then the need for the extra LEDs may not be necessary but we still looked into the different                  
options in this section. 

4.2.10.1 Single Color LEDs 

The first option was the single color LED that is common in most beginner electronic kits or                 
classes. We considered using these with three different colors to represent the three modes of               
operation of ‘Away’, ‘At Home’, and ‘Always Closed’. We could also implement a few more to                
show the door opening and closing. A pack of 100 LEDs is priced at $5.55 from eboot [EBOT].                  
This would include 10 different colors from red, orange, yellow, green, emerald green, blue,              
purple, warm white, white and color flash. Each of the LEDs has a max current of 20 mA and 1.8                    
– 2.0 forward voltage for the red, yellow, green, and orange colors. While the blue, white, warm                 
white, emerald green, and purple colors have a forward voltage of 3.0 – 3.2 V. This would give                  
us more than enough options and flexibility for our design. 

37 

  Sunfounder LCD 
1602 

Sparkfun SerLCD Uctronics OLED 

Price $6.49, ($8.99 I2C) $19.95 $6.99 

Size 80 x 36 x 12 mm 81 x 38 mm 27 x 27 x 4 mm 

Characters 16 columns x 2 rows 
(32 total) 

16 columns x 2 rows 
(32 total) 

8 total rows 

Pixels N/A N/A 128x64 

Working Voltage 5 V 3.3 V 3.3V – 5 V 



 

4.2.10.2 RGB LEDs 

The alternative to single color LEDs are RGB LEDs which have the ability to change colors                
based on different voltage levels. They are common cathode but made with 4 pins instead of 2.                 
The different voltage levels on each pin is what produces the multiple color options. This would                
have changed our design from needing three or four single color LEDs to just one RGB LEDs.                 
We could just change the color on the one RGB LED to still represent each operation message.                 
These LEDs also come in a pack of 100, which also includes a 300 pack of resistors and is sold                    
for $8.99 from EDGELEC [EDGE]. Voltage and current values are about the same as the single                
color LEDs with current at 20 mA and red voltages at 2.0-2.2 V and blue and green voltages                  
being at 3.0-3.2 V. This option could have reduced the amount of electronics mounted next to the                 
door while also still allowing us to use the visual feature. 

4.2.11 Wifi Module 

A major part of our design for Pet Connect was that the pet owner can use the mobile app to                    
control the door opener and get notifications based on the sensors. In order to do this the single                  
board computer was needed to connect to the internet by the way of a Wifi module. While the                  
Raspberry Pi 4 does have a built in wireless chip, we also researched other options for the case                  
that we end up not using the Raspberry Pi 4 and to make sure it was the right choice for the                     
project design. 

4.2.11.1 Raspberry Pi 4B Built-In Wireless 

One of the Raspberry Pi 4B’s main features is that it comes with built in wireless connectivity.                 
This is a dual-band 2.4/5.0 GHz IEEE 802.11ac wireless that allows us to connect the Raspberry                
Pi to the internet and the mobile application. We could have also done this through the Gigabit                 
Ethernet port but this was not ideal as the Pi might not be close to the home router. The wireless                    
feature also allows multiple options with remote access. This could have been through the              
internet with port forwarding, using the Pi as an Access Point. We were anticipating to use the                 
built in wifi to connect to the mobile app or to connect to the cloud hosted database, but the                   
flexibility of the portforwarding was an added bonus. 

This was a great option for our project design as the wireless internet connection is already built                 
in and would not require any solder or configurations that would be needed if we decided we                 
needed another wifi module or single board computer. The built in wifi would also be integrated                
with the Raspberry Pi 4B and would make it easier to set up. As mentioned in the single board                   
computers section the Raspberry Pi has great third party and community support that gave us               
help if we ran into any problems when connecting to the Raspberry Pi 4B. 

4.2.11.2 Sparkfun ESP8266 

The ESP8266 from Sparkfun was another option that would allow us to connect our mobile app                
with the smart board computer. It works with any microcontroller or single board computer with               
the need of some soldering or jumper wires. It has an integrated TCP/IP stack to support 2.4/5.0                 

38 



 

GHz 802.11 b/g/n IEEE standard. Like the Raspberry Pi, we also found that it had great                
community support that could have aided us with the configurations and usage. 

Priced at $6.95, the ESP8266 would have added to our project cost which was a drawback.                
Another drawback would have been the added design to implement this wifi module through              
soldering and wire connections. This option did not make sense if we were going to use the                 
Raspberry Pi 4B that is already built in. This wifi module would have not had the same                 
simplified integration that comes with the Raspberry Pi. 

4.2.11.3 Adafruit Mini USB 

The Adafruit Mini USB can add wifi capabilities to any microcontroller or single board              
computer that has a USB port. For this option, all we would have needed to do is plug it in and                     
do some simple configurations and the board would be connected. It offers 2.4 GHz on the IEEE                 
802.11 b/g/n standard but does not support the 5.0 GHz option that the other two modules have.                 
This product is advertised as a way to add wifi to older versions of the Raspberry Pi that did not                    
have the wireless built in. With an $11.95 price, this would be a good option for older models of                   
single board computers. 

For our purposes, the Mini USB would have allowed us to use an older version of the Raspberry                  
Pi and still have wireless capabilities. The plug and use set-up would be much simpler than the                 
Sparkfun ESP8266. However, this would have taken up a USB slot that we might have needed to                 
connect certain peripherals. This option would have seemed more justifiable if we needed to use               
the older versions of the Raspberry Pi or something that did not already have wireless already                
built in. 

4.2.11.4 Wifi Module Selection 

After looking at the comparison table below, we decided to use the built-in wireless option that                
comes with the Raspberry Pi 4B. This was the obvious choice as it did not increase our project                  
cost, it had great community support and the convenience could not be matched by any other                
option. The Sparkfun ESP8266 and the Adafruit Mini USB acted as backup options if we ran                
into major problems with the Raspberry Pi 4B. Table 12 comparison of wifi module selection. 

 

Table 12 : Wifi Module Comparison 

39 

  Raspberry Pi 4B 
Built-In Wireless 

Sparkfun ESP8266 Adafruit Mini USB 

Price Free($35, with 
Raspberry Pi 4) 

$ 6.95 $11.95 



 

 
Table 12 : Wifi Module Comparison (cont) 

 

4.3  Software Research 

In this section, we conducted various software research as part of Software Development to gain               
an understanding of the problems that we could have faced during the development. This process               
provided development organization, determined resourcing needs for the project as well as            
deciding which technologies to use and how to implement them. Our software research consisted              
of determining the type of mobile application, development environment, programming          
languages, database selection, and wireless communication. 
 
4.3.1     Mobile Application 
 
One of the major goals of developing this project is to create the Internet of Things product that                  
is easy for pet’s parents. We want our product to become the most promising technologies that                
will change and accommodate pet owners’ daily life and their beloved pet. We conclude that               
mobile applications will be the great support to implement hardware and software. We want our               
product application as the central control system dashboard that allows users to manage devices              
via mobile with internet-enabled things. This Dashboard also should collect information from            
sensors and show it to the users. Our objectives for creating mobile applications is to provide                
user experience, protect security, and support real-time access. 
  

40 

 Raspberry Pi 4B 
Built-In Wireless 

Sparkfun ESP8266 Adafruit Mini USB 

Connection Method 
 

Built-In Soldering/jumper 
wires 

USB Port 

Compatibility Raspberry Pi 4B 
(Built-in) 

Any microcontroller 
(Arduino, MSP etc.) 

USB Port needed as a 
part of microcontroller 

Standard 2.4/5.0 GHz IEEE 
802.11ac 

2.4/5.0 GHz IEEE 
802.11b/g/n 

2.4 GHz IEEE 802.11 
b/g/n 

Community Support Great Great Good 



 

4.3.1.1 Native Mobile Application 
 
Native mobile application is software that is designed for iOS, Android, or Windows Mobile.              
Users require these apps through an online store or marketplace such as the app store or android                 
app on google play so these native apps do not run in the browser. They are designed and                  
developed for one or specific platform so it can take full advantage of all device features for                 
example camera, list of contact, voice assistance or so on. 
 
Native applications offer offline support without internet activity based on data caching like             
device’s notification system that can work off-line. Information message can alert the user for              
occurrences events within the system weather is actioned-required notification or passive           
notification. In addition, native application development has inherent support for all devices and             
offers SDK level to support lower end devices and it directly interacts with native APIs without                
depending on middleware such as plugins. Here are the benefits and capabilities that Native              
Mobile Application support developments: Immediate access to new features, ability to add AI             
and Voice Assistant, easy publish from app to app stores, increase usability/ User experience. 
 
Referred to Smart Phone app in section 3 which required strong response time and cost in our                 
mobile app. Native development mobile applications consider having very good response time            
and are limited only by device specification. The cost of building native app on the other hand                 
will be very high due to minimal code reuse across platforms, however native mobile              
development is likely to meet our requirement since the system can access built-in features of the                
smartphone such as microphone and camera by default which is the most important part to               
operate the device in this project. 
  
4.3.1.2  Mobile Web Application 
 
Mobile Web applications are not real applications; they are websites that look and feel like               
native applications. They can be accessed through the mobile device’s web browser and they do               
not need to be downloaded and installed on the device. This application is written in HTML,                
CSS and JavaScript which can leverage a wide range of frameworks and libraries such as               
angular, PHP, Python or react. There are no standard software development kits (SDKs) that are               
required to make mobile web apps. One of the biggest challenges for developing mobile web               
applications are common application UI control, tab button, camera access and push notification             
which play a major part in our project. Those components can be recreated however it might lead                 
to our application not working as expected. 
 
In 2017, Google introduced Progressive Web Applications (PWA) that allow Mobile Web            
Application to adopt more app-like features such as push notifications, offline capabilities, app             
icon and more. Microsoft also announced their plan and solutions to bring Progress Web              
Application (PWA) become “first class citizens” on Windows 10. This solution makes it easier              
for developers to create applications from a single code base which can then be used on various                 
platforms and quickly updated with new features or bug fixes by simply deploying to servers.               
Figure 18 Compare UI develop from Native and Mobile Web App. 
 

41 



 

  

 
 

Figure 18: Compare UI develop from Native and Mobile Web App 
 
 
4.3.1.3  Hybrid Mobile Application 
 
Just like native apps, hybrid apps run on the device, throughout the use of plugin, these                
applications can access to mobile device’s features. Hybrid apps are written with HTML, CSS,              
and JavaScript and run from native container and its own embedded browser, which is invisible               
to users. Hybrid apps depend on WebViews which are in-app browsers to allow mobile              
applications to render user interface and web contents. This is how Android and iOS devices can                
run hybrid apps as native mobile applications. Even though development costs from building the              
hybrid app met our requirement in section 3 since the code can be reused across platforms,                
device support for low-end devices will be a challenge. Table 13 shows key features for Native,                
Web & Hybrid. 
 

 

Table 13:  Comparison for Native, Web, and Hybrid Mobile Application (cont) 
 

42 

Feature Native Web-Only Hybrid 

Device Access Full Limited Full (with plugins) 

Performance High Medium to High Medium to High 



 

  

Table 13:  Comparison for Native, Web, and Hybrid Mobile Application (cont) 
 
4.3.1.4  Development Environment 
 
Development platforms help designers and developers build the software and application they            
need. Difference platforms have different features to support our design project. We want             
development tools that are easy to use and have enough online resources available for developers               
to learn. Below are the lists of IDE that have potential for our developer to use during                 
iOS/Android development. 
 
4.3.1.4.1 Android Studio  
 
Android Studio is Google’s supported IDE for developing android apps. During the process of              
software research, our main focus is target audience and android users are also one the main                
users in our product. Android studio is a native mobile development tool that provides shortcuts               
for coding and designing; its layout design makes it very easy to use which can reduce time of                  
coding. Android studio supports all the same programming languages like Java or C++.The best              
part of android studio is providing drag and drop features to design the layout for our project.                 
This is an open source tool which meets our requirement for smart phone app cost. The                
developer can use Android’s built-in developer kit for free as well. 
 
System requirements: 
 

● Microsoft Windows 7/8/10 (64-bit) 
● Mac OS X10.10 Mac OS X 10.10 (Yosemite) or higher, up to 10.13 (High Sierra) 
● Linux OS Tested on Ubuntu 14.04 LTS, (64-bit distribution capable of running 32-bit             

application 
● 4 GB RAM minimum, 8 GB RAM recommended. 

43 

Feature Native Web-Only Hybrid 

Development Language Platform Specific HTML, CSS, 
Javascript 

HTML, CSS, 
Javascript 

Cross-Platform Support No Yes Yes 

User Experience High Medium to High Medium to High 

Code Reuse No Yes Yes 



 

● 2 GB of available disk space minimum, 4 GB Recommended (500 MB for IDE + 1.5 GB                 
for Android SDK and emulator system image) 

● 1280 x 800 minimum screen resolution 
 
4.3.1.4.2 React Native 
 
React native is cross-platform development tools that can develop apps for other platforms or              
operating systems. We also want our mobile application to be published and used on both an                
android phone and iPhone therefore considering cross-platform tools can be beneficial for both             
smartphone users. React Native was developed by Facebook community in which their            
framework is based on JavaScript Technology. This is also an open source tool which also               
allows developers to develop apps that feel like native one. Expo is a framework of tools that                 
service this platform without touching Android studio or XCode. Vs code is recommended IDE              
for code editor. 
 
System requirement: 
 

●  JDK for Windows or SDK for Mac (Version 8 or newer) 
●  Visual Studio Code 
●  Android studio for Android app or XCode for iOS app 
●  Build-emulator for Android Studio or built-in iOS Simulator 
●  Node Package Manager (NPM) 
● Node.js (Version 8 or Newer) 
●  React Native Command Line Interface (React Native CLI) 

 
4.3.1.4.3 Flutter 
 
Flutter is also a cross-platform mobile application developed by Google. It was released in 2018.               
Flutter framework is an open-source UI software development kit, it is considered high quality              
native interfaces on iOS, Android, Mac, Linux, and Windows. Flutter uses language Dart which              
is similar to Java or JavaScript. Flutter is single code based that can be run in multiple platforms                  
therefore it saves time for the developer to code since the application will work the same on                 
different platforms. Other benefits for single based code are Low-Cost App development. 
 
Windows 
 

●  7 SP1 or later (64-bit) 
● Disk Space: 400 MB (does not include disk space for IDE/tools). 
● Tools:  Windows PowerShell 5.0 or newer (this is pre-installed with Windows 10) 

Mac: 

● 64-bit macOS Disk Space: 2.8 GB (does not include disk space for IDE/tools) 
● Tools: Access to bash, curl, git 2.x, mkdir, rm, unzip, which. 

44 



 

Linux: 

● Operating Systems: Linux (64-bit) 
● Disk Space: 600 MB (does not include disk space for IDE/tools). 
● Tools: curl, git 2.x, mkdir, rm, unzip, which, xz-utils 
● Shared libraries: libGLU.so.1 - provided by mesa packages such as libglu1-mesa on 

Ubuntu/Debian 

4.3.1.4.4  Development Environment Selection 
 
Based on Mobile Operating System Market Share Worldwide, data shows that the percentage of              
Android users as of June 2020 is 74.14 %. As initial development, we want to target as many                  
users as we can, the feedback and comments from the user experience can help with our further                 
development and implementation, as a result we narrow our selection development to Android             
native mobile applications. Android development benefits easy for integration, Open Source           
Platform, and easy for adoption. Android studio became our top choice for IDE because not only                
Android Studio now is Android’s official IDE but also Android Studio has the Android Emulator               
that can be used to run the test faster than a real device. Our system features require fast and                   
real-time testing on data transformation therefore testing tools and framework can help testing             
Android apps. Since we want the IDE that allows us to write native Android apps so react native                  
and flutter are not the options because they are the framework for developing cross-platform              
apps. 
 
4.3.1.5 iOS Exclusive Development 

iOS is a mobile operating system created and developed by Apple which runs the iPhone, iPad,                
and iPod Touch device. iOS is the second-largest operating system after android. It supports              
supports Objective-C, C, C++, and swift programing language or build cross platform native             
application using React Native (JavaScript) or Xamarin (C# & F#). Unlike Android, iOS is a               
source-closed platform that was created for Apple’s hardware therefore mac devices are required             
for iOS platform to run the latest version of Xcode for IOS simulator. Xcode is APPLE’s IDE                 
for both iOS apps and Mac. Windows developers can solve this issue by installing VM and                
Virtual Box to install Xcode. Testing an iOS app on a real device is critical and very important                  
for our application since we want our product to remotely operate the device. Testing can               
determine performance; Beta testing can provide feedback such as testing Push Notification, data             
storage, and third-party API. Cloud testing also tests applications on real devices to ensure              
quality of our application. In addition, we need to consider the cost to deploy the application to                 
the app store therefore there is a member fee associated with iOS development as well. 

System Requirement 

● A Mac with macOS Catalina 
● Intel i5 or i7 equivalent CPU 2.0 GHz 
● At least 8 GB of RAM 
● At least 265 GB disk Storage 

45 



 

 
4.3.1.6  Android Exclusive Development 
 
Android is a mobile operating system developed by Google. It is known as the world's most                
popular operating system that overtake windows. Android is released as an open-source format             
to help advance standard mobile devices. During the discussion of our research and to meet our                
software requirement, our team agreed that we want to mainly have Android applications for a               
supposed number of Android users. To understand its operating system is critical for mobile              
development. Android in developer perspective is a Linux-based operating system for smart            
phones and tablets. Android supports various applications through Google Play Store. The            
android platform allows end users to develop, install their own application on top of its               
framework. Android SDK tools is a component for Android SDK necessary for the developers to               
build, test, and Debug apps for Android. 
 
System Requirement 
 
Window/ Mac 

● Microsoft® Windows® 7/8/10 (32- or 64-bit) 
● Mac® OS X® 10.10 (Yosemite) or higher, up to 10.12 (macOS Sierra) 
● 3 GB RAM minimum, 8 GB RAM recommended; plus 1 GB for the Android Emulator 
● 2 GB of available disk space minimum, 

4 GB Recommended (500 MB for IDE + 1.5 GB for Android SDK and emulator system                
image) 

● 1280 x 800 minimum screen resolution 
● For accelerated emulator: Intel® processor with support for Intel® VT-x, Intel® EM64T            

(Intel® 64), and Execute Disable (XD) Bit functionality 

Linux 

● GNOME or KDE desktopTested on Ubuntu® 14.04 LTS, Trusty Tahr (64-bit distribution            
capable of running 32-bit applications) 

● 64-bit distribution capable of running 32-bit applications 
● GNU C Library (glibc) 2.19 or later 
● 3 GB RAM minimum, 8 GB RAM recommended; plus 1 GB for the Android Emulator. 

 

4.3.2  Development language 

To consider the language to use in our mobile application, the first thing we must consider is the                  
developer's development background and skills. We need to ensure that our project meets the              
deadline so choosing the language that our development team is comfortable with would be              
easier for integration, adaptation, and implementation between the software and the device.            
Development environment also takes a major factor for choosing programming languages as            
well. Below are programming language options for software development. 

46 



 

4.3.2.1 Java 

Java is the most popular choice for developing Android mobile applications and it supports              
Android Studio. Java was created for the game developer and launched by Sun Microsystem in               
1995. Java is strongly typed, compiled language [14] which means error and exceptions are              
more likely to occur because each type of data is predefined, and constants or variables defined                
must be described. Java also relies on virtual machines to execute the program [15] Google               
classified JAVA as the official language to use in developing Android apps and most chosen for                
developers with games in play store. On the downside Java is among most different languages to                
learn but since Java language has been around so many years there are many tutorials online for                 
starters available. In this project, most of our developers have an Object-oriented Java             
background and we can bring visual designers along with features that are advanced and              
powerful. However, our main requirement for creating an Android and iOS app by using a single                
codebase is concerning. Time is of essence to make sure we meet our deadline therefore Java                
language will not be a good option. 

4.3.2.2 Dart  

Dart is a new language launched in 2011. It is developed by Google and is used to build mobile,                   
desktop, server, and web applications. It is open-source, object-oriented, client-optimized          
language for applications on multiple platforms on both native and Cross-platform mobile            
development. Dart uses C-style syntax and optionally transcomplies into JavaScript. Dart can be             
very flexible because it can be efficiently compiled AOT or JIT or into other languages. In 2013                 
Dart team announced an update that Dart-to-JavaScript compilers now run faster than            
handwritten JavaScript with the dart2js compiler. Dart language support flutter for native mobile             
development on Both Android and iOS [16]. Advantage of Dart is flexible, fast, and by having                
hot reload can benefit our implementation and testing during our development.  

Dart languages seem to meet our criteria for mobile development because single codebase can be               
re-used across platforms and hot reload that can support function mode in our device. Our               
developer still needs to take some time to learn this new language before starting building the                
applications. 

4.3.2.3 JavaScript 

JavaScript or JS is lightweight, Object-oriented, and best known as the scripting language for              
web pages. JavaScript runs on the client side of the web which can be used for UI design and                   
how events occur in the program. The basic syntax of JavaScript is like both Java and C++.                 
Javascript is a non general programming language however JavaScript with HTML5 making a             
viable way to deliver browser-based applications to mobile devices. There are various JavaScript             
framework developer’s choices to use during development applications. Here is some popular            
JavaScript framework. 

NodeJS is an open-source, cross platform, Java-script runtime environment that executes           
JavaScript code outside web browsers. The operating support Window, Linux, MacOS,           

47 



 

SmartOS, Free-OpenBSD, and IBM. It is a server-side platform built by Google Chrome’s             
JavaScript Engine. This JavaScript is part of MEAN stack. 

ReactJS considers more JavaScript libraries. It is open-source JavaScript released in 2013            
introduced by Facebook to build dynamic user interfaces. React uses the Virtual DOM which              
makes it easier for developers to update changes performed by users without other parts of the                
interfaces. 

AngularJS is a client/server fully featured framework developed by Google. Google introduced            
NativeScript with angular framework for Android, iOS, and Windows Platform. This framework            
comes with JavaScript virtual Machine to bridge modules and runtimes. 

4.3.2.4 Development Language Selection 

Based on section 4.3.1.4 for Development Environment, the team concluded that we want to              
choose Android studio for our development platform. Therefore Java language seem to be a right               
options for our project development based on following reason; Our team member has more              
experience in Java development so it would be easier to learn and develop the code without new                 
learning, Second Java is known as the official language for android app and it is one of the most                   
support language by google and Play Store. Moreover, there are many Android’s API’s available              
for the Java language. We tend to use some API in Camera, audio, and push notification which                 
are the main system of our mobile application so using Java language can support our               
development. 

Dart does not fall in our selection even though dart is a client-optimized language for fast apps                 
on any platform. To use Dart, we need to install flutter and dart plugins to Android Studio. There                  
are a few downsides of Dart is that Dart class code cannot be written. We want a classes-based                  
object-oriented programming language that can be used in place for all classes in our package.               
Another reason is learning time: our developers need to learn a new language which can be time                 
consuming and a big factor that can affect development time. Last, since we want to build native                 
app, therefore Javascript can not be support by choosing platform like Android studio 

4.3.3 Databases 

While our project was not the most data driven application there was still some data being passed                 
around that we needed to be keeping track of. To do this we needed to implement a database                  
management system. This would need to hold things like the user’s username and password, a               
pet ID, and a pet name. In this section we will lay out the options that we considered when                   
selecting which database system to use for our project. We used price, compatibility,             
connectivity, and ease of use to determine which database to go with. 

4.3.3.1 MySQL 

MySQL is a relational database management system that was first released in 1995 [MYSQ]. It               
is now a popular choice for web app developers as it is a part of the commonly used LAMP stack                    
of Linux, Apache, MySQL, and PHP. It is open source and free to use which already make this                  

48 



 

an appealing option. Security is something that MySQL is known for as some major web               
applications use this such as Facebook and Twitter. As we could possibly have been storing               
sensitive information this was definitely something to consider with MySQL. The minimum            
hardware requirements have a RAM of 4 GB and 6 GB recommended. This means that MySQL                
would have needed to be set up on a hosting computer for our app. For our purposes this was a                    
downside of using MySQL instead of another database that does not have to be installed as a                 
server database. 

As far as connectivity, MySQL offers many options and is not that limited. It even has                
Connectors for the possible programming languages that we could have used to develop the              
mobile app for our project such as, Java, Python and JavaScript. If we did not choose to use a                   
connector we also had the option of writing the backend API’s with the PHP language as it was                  
mentioned above as part of the common LAMP stack. 

MySQL also comes with a Workbench that is easy to use and install. This tool would have been                  
useful for initially creating the database tables as well as for testing sample data. It should be                 
noted that the developers of the mobile application had some prior experience with MySQL and               
MySQL Workbench as this would have decreased the time spent on learning a new database               
management system. Figure 19 is a visual representation of the MySQL database in use. 

 

Figure 19: MySQL Workbench Example (pending permission from MySQL) 

4.3.3.2 Firebase 

Firebase is Google’s database management system. It aims to make app development easier for              
developers by having a NoSQL database that is stored on the cloud rather than an application                
server. It also provides the features of syncing all data across all clients in seconds and is still                  
accessible when the app is not connected to the internet. Another major benefit to using Firebase                
was that it is available with documented support for iOS, Android, JavaScript and other              
languages. As with other databases, Firebase secures the data we want to store and provides a                
better way to authenticate users. It gave us the option to have our users sign in with their Google,                   
Facebook, or Twitter accounts while also using phone number or email and password             
authentication. Firebase also offers some tools to help us manage our project such as              
Performance Monitoring, Crashlytics, and Test Lab. All of the features are laid out together in an                
easy to use web console shown in the picture below. Companies like Venmo and Lyft trusting                

49 



 

their data with Firebase, are two good examples of why we could have also trusted our data with                  
it. Figure 20 shows an example of the Firebase database console. 

 

Figure 20: Firebase Console Example 

For our design we liked the free option that comes with Firebase. It gave us free app distribution,                  
authentication, 1 GB of storage data, 5 GB of file storage (such as photos or videos), and the                  
possibility of 100 simultaneous connections. We anticipated all of those specifications as being             
more than enough for our project design. If in the future these limitations become too much of a                  
problem we can always upgrade to the Blaze Plan. Another pro was that with whatever platform                
we chose to go with Firebase is easily connectable and there are a multitude of guides to help us                   
get started. We also had the option of choosing between their two types of databases, the                
Realtime Database and the Cloud Firestore. These options are very similar but the Cloud              
Firestore is for larger scale applications while the Realtime Database [FIRE1] was more suited              
for our project design. However, we are able to use both of these types of databases in our                  
project. With either option we have access to Google Firebase’s Storage which is where we               
could have saved files for video or photo uploads. We considered this as a useful option to us if                   
we decided to store any video recordings from the camera or if we wanted to save preset audio                  
clips from the user. 

One drawback of Firebase was its use of the NoSQL database in both of the database options.                 
This was a drawback only because of non-familiarity of this from the development team. NoSQL               
in Firebase stores data differently than relational databases as instead of tables the data is stored                
in JSON trees. New data entered creates a new node in the JSON tree. An example of this JSON                   
structure can be seen in the code snippet below from the Google Firebase documents. 

 

50 



 

 

Figure 21: JSON Tree Structure Example Code Snippet 

 

While there might have been somewhat of a learning curve with Firebase it offers a free, reliable,                 
and secure option for this project design. Not to mention the benefit of having a cloud database                 
server along with the added features that come with Firebase which all made it an intriguing                
choice. 

4.3.3.3 MongoDB 

Our third database option was MongoDB version 4.2. This version was released on August 13 of                
2019 and like Firebase this is also a serverless database option. It is free to use starting at 512                   
MB of data that can then be increased to 2 GB for $9 a month and 5 GB for $25 a month. While                       
our project design would most likely be okay with the 512 MB, the charge for the higher storage                  
values was something to think about in the case of growth of the product to more users. For                  
security MongoDB offers the authentication options through Facebook, Google, and Apple ID.            
Its security is trusted by companies like Verizon and Squarespace and it has the security               
certifications with Kerberos, x.509 PKI, and LDAP to back it up. 

MongoDB is also open source with good documentation and guides to get us started. This would                
have been important in helping with the learning curve as it also uses a NoSQL database. The                 
JSON tree-like structure is used that is similar to Firebase. We are able to use this database                 
management system with any application platform that we choose with guides and            
documentation for each of them. 

The fact that it acts as a serverless database, the possible platform options with community               
support, and the security made this option appealing. However the cost of growth in the storage                
amounts was a drawback. 
  
4.3.3.4 Database Selection  

Using Table 14 below we compared the pros and cons of each of the database options that we                  
have researched. For our design, we selected Google Firebase as our database management             
system. Looking at MySQL, it was beat out by the other two options due to the fact that both                   

51 



 

Firebase and MongoDB are cloud hosted. Although Firebase and MongoDB both provide good             
community support and Google and Facebook authentication, Firebase is a better option for the              
amount of free storage that comes with it. MongoDB only offers 512 MB free while Firebase                
offers 1 GB. This along with the fact that Firebase comes with some extra features such as                 
Crashlytics, Performance Monitoring and the Test Lab made Firebase the clear choice. With             
Firebase, we also have the option to use the Realtime Database or the Cloud Firestore. These will                 
be discussed further in the design section. 

 

 
Table 14: Database Pros/Cons Comparison 

 
4.3.4 Wireless Communication 
 
Given that our project design is a smart home system that interacts with a mobile application it                 
was important for the design team to think about wireless communication. For the software side,               
that means figuring out how the different programs were going to interact and communicate the               
data that they receive from each of their devices. We needed to take into account the possible                 
connections of the mobile app and the database, the mobile app and the Raspberry Pi, the                

52 

  SQL NoSQL 

DBMS MySQL Firebase MongoDB 

Pros ● Development 
team has 
some 
familiarity 

● Relational 
database 

● Open source 

 

● Cloud hosted 
● Open source with 

good community 
support 

● Scalable storage 
options 

● Google/Facebook 
authentication 

● Easier 
implementation 
for the platform 
options 

● Cloud hosted 
● Google/Facebook 

authentication 
● Popular in the 

community 

 

Cons ● Must be 
hosted as a 
server 
database 

● Learning curve of 
the new 
management 
system and 
NoSQL 

● Learning curve of 
new management 
system and 
NoSQL 

● Only 512 MB 
free storage 



 

Raspberry Pi and some of the peripherals, and the Raspberry Pi and the database. In this section                 
we will talk about the different methods that we used to accomplish this.  
 
4.3.4.1 Raspberry Pi OS (Raspbian) 
 
Raspbian is the official Raspberry Pi OS. This OS is the recommended OS for the Raspberry Pi                 
4, 4B which was our first choice in our design. The Operating System is available for free                 
download and use. Raspbian is based on Debian Linux and Debian is very light weight therefore                
it makes it very useful for the Raspberry Pi. The Raspbian includes tools for browsing, python                
programming, and a GUI Desktop. The Raspbian desktop environment is known as “Lightweight             
X11 Desktop environment” or LXDE. Users required to download Raspbian images to SD card.              
There are two different types of image; First ''Raspbian Stretch with Desktop” which comes with               
a full Desktop Environment including pre-installed software. Second “Raspbian Stretch lite”           
which has no tools pre-installed and no GUI installed. There are two ways to configure Wi-Fi                
connection in Raspbian. First using the Raspbian configuration tool “raspi-config”, WIFI           
password will be stored in configuration text or setting the connection by command line for more                
security. Raspbian was our first choice for OS because it is simple and user-friendly. The               
command line also makes it very easy for new users whenever we need to install software. The                 
repository already provides an updated version of new update software. In addition, this OS is               
open-source so it is free of use which meets our requirement that we need to save costs during                  
our application development. 

 
Software Requirements: 
 

● Raspbian OS image 
●  EdgeX package for Raspberry P 
●  IP scanning software 
● WebNMS IoT platform 

 
Window : Win 32 disk imager software is required to burn the RPI image onto the SD card. 
 
Linux :  Disk software is required to burn the RPI image onto the SD card 
 
MAC :    Apple Bake off or Burn it software is required to burn the RPI image onto the SD card. 

4.3.4.2 Socket Programming 

In networking, a socket is a combination of an IP address and a port number. A more formal                  
definition for a socket is one endpoint of a two-way communication link between two programs               
running on a network [SOCK]. This works by having one of the devices acting as a server and                  
the other acting as a client. The server program creates the socket with IP and TCP protocols and                  
then binds its IP address and the port number that it is using. An example of this can be seen in                     
the diagram below. The server can then listen and accept client sockets in order to communicate                
with other devices, typically with utf-8 bytes. On the client side, the program also creates a                
socket with the IP and TCP protocols but it is looking to connect to the server socket. It does this                    

53 



 

by using the same IP address and port number that the server socket was created with. At this                  
point the two programs can send data back and forth from each other. It should be noted that this                   
data would then need to be decoded from utf-8 bytes in order to understand a string for example.                  
It should also be noted that in order for this to work when the server and client are not on the                     
same network port forwarding would be required. Port forwarding is when you map any              
communication request to a specific port on a router. This would make that port public and give                 
access to clients that are not on the same network as the server. While this is good for the                   
purposes of our project design, it also opens up the possibility for malicious people to attack and                 
get into the user’s home network and data. 

 

 

Figure 22: Socket Breakdown Example 

This was an option for the connection between our mobile app and the Raspberry Pi. Sockets are                 
a part of most programming languages basic libraries. For our purposes, this was the case for                
Python, used for the Raspberry Pi and Java, used for the mobile application. The Raspberry Pi                
would have needed to be acting as the server while the mobile app would act as the client. Then                   
the app would have been able to send data, in our case commands for the door mechanism and                  
the Raspberry Pi to receive and handle. In the other situation the Raspberry Pi could have sent                 
data to the mobile app such as the system detected the pet wants to go outside. The Java program                   
would then handle that data and send a notification to the user. Another option was to connect                 
our Raspberry Pi to the database directly. We still would have needed the Socket Programming               
to send the live video and messages to and from the app and home system. This would have                  
taken up a lot of space in the Realtime Database and was not the most efficient way of streaming                   
that data. Even connecting the Pi to the database would have provided a more secure option for                 
the data transfers and both options were considered in the design and implementation phases. 

4.3.4.3 Google Services Pugin and Firebase SDK 

Since we have selected Google’s Firebase to act as our database management system, we needed               
a way to connect it to our application. This was done by adding the Google Services Plugin to                  
the build.gradle file that will be created when the Android project is created. Our Firebase               
Realtime Database was then able to be added to our Android Project as well. 

The Google Services Plugin provided us with many methods that allowed us to work and interact                
with our database. We were able to write to the database by first getting an instance of it with                   
.getInstance() and then getting a reference to the node we wanted to access with .getReference().               
From there we used .setValue() to write the data to the database. As far as reading from the                  

54 



 

database, we needed to implement an event listener on the reference to the data of the node that                  
would be updating in real time. An onDataChange() method was then needed to hold the               
.getValue() call on a DataSnapshot object in order to capture the data that had just been updated.                 
There are other methods and processes that are included in the Firebase SDK that were explored                
during the implementation and design phases. 

This method of connecting to the database is what we used to allow our mobile app to                 
communicate with our database. This allowed the mobile app to stay up to date with all of the                  
saved and updated data. As for connecting the database to our Raspberry Pi, Google Firebase               
currently does not support Python. However, there are multiple third part helper libraries on the               
Firebase guides that allowed us to make the connection, such as Pyrebase and python-firebase.              
As mentioned in the socket programming section, these methods of connecting the Raspberry Pi              
to the Firebase Realtime Database were further assessed in the design and implementation             
phases.  

4.3.4.4 Dataplicity 

Dataplicity is a tool that allows its users to access their Raspberry Pi from anywhere [DATA].                
More specifically they can access the Raspberry Pi’s command line. This would give people the               
ability to access and control their Raspberry Pi without the need for a long configuration process.                
With Dataplicity, Port Forwarding, VPNs and Static IP addresses would no longer be needed.              
The only thing that would be needed is a connection to the internet. This software is ideal for                  
Internet of Things projects. The way it works is after the configuration, a secure HTTPS               
connection is made to the Dataplicity IoT router. You can then access the Pi terminal from this                 
router and do any of the actions that are applicable from the terminal. There are three pricing                 
options: free, standard, and pro. Free provides the user with 512 MB per day, HTTPS               
transmissions and the remote terminal. The standard is only 3 dollars a month and bumps it up to                  
1GB per day. The final pro plan would give us 2 GB per day at 4 dollars a month. We anticipated                     
being fine with the free version for our design but it was good to know that the other two options                    
are out there. 

For the purposes of this project, Dataplicity would have been used to stream the live video from                 
the Raspberry Pi to the mobile application. This would have provided the software developers an               
easier way to display the video feed into the mobile app. Instead of going through all of the                  
configuration and port forwarding, a simple link would be provided that can be used by the wifi                 
capabilities of the user’s phone to see the video. This was done using Dataplicity Wormhole               
which is what makes the connection to the Raspberry Pi and Hawkeye which is a lightweight                
video streamer. Dataplicity could also serve as a way to transmit the user’s message as they are                 
talking through their phone to be played out loud on the system’s speaker. This option was much                 
better for our project design as we should have been able to implement this in a better way than                   
by trying to steam the video with Socket Programming.  

4.3.5 Version Control 

Version control is very important with the development of any software project. It is used to                
keep track of all the updates you are making to the code, who is making them, and provides a                   

55 



 

way of backing up previous work. Our project needed to implement a version control system in                
order to easily share files between the development team and to keep our work organized. We                
prioritized familiarity and ease of use to decide on which option to choose in this section. 

4.3.5.1 Git 

Git is a one of the most popular version control systems that are out there. It’s latest version of                   
2.27.0 which was released on June 1, 2020. It is mainly for organizing source code versions but                 
it also allows project teams and companies to keep track of who is making changes to a file. Git                   
is free, open source and due to its major popularity, has great community support. One major                
advantage of using Git is the branching and merging system. This allows developers to branch               
off and work on the same task while trying different ideas. They can then compare which idea                 
worked better, delete the other branch and merge the better implementation to the master branch               
of the project. This makes software development much more efficient and easier to share files for                
the integration phase of development. Another advantage is that Git has many plugins and              
integrations into IDEs and text editors. This makes it easier to commit and push things to Git                 
right in the development environment. We also have the option of using the git commands               
through the command line. Git is a very powerful tool and was in high consideration for our                 
project. 

4.3.5.2 Github 

Github is a web-based application that provides version control with all of the same great               
features of Git. Github has an easier to use web interface rather than doing everything through                
the command line. It allows for the same file sharing, branching, merging, and tracking of work                
that Git offers. For the use of this project, the free version is sufficient but there are also other                   
plans that can be upgraded. Github is also easily integrated into most IDEs and text editors to                 
take one less step of committing, pushing and pulling from the repository. There is also a desktop                 
application, Github Desktop that was released in 2015. This does all of the same things as Github                 
and Git, it is just in the form of a desktop app. Github takes the many benefits of Git and adds                     
more accessibility of the web interface. It should also be noted that the development team is                
familiar with Github and have used it with past projects. 

4.3.5.3 Beanstalk 

Beanstalk is another version control option that was built to take out the hassle of hosting code                 
and managing deployments. Like most version control systems they want the software            
developers to focus on writing the software instead of having to put time into the management of                 
the development. Beanstalk uses Git or SVN to act as the main version control component with                
the web application to manage the changes and provide extra features. These features include              
notifying the entire team when a push was made, assigning different permissions to each team               
member, and a code review system that allows the entire team to get involved. There are five                 
price options available starting at $15 a month for 3 GB of storage and going up to $200 a month                    
for 60 GB of storage. While the features of Beanstalk seem beneficial the price would have                
driven up the cost for our project, while we have two other free options. 

56 



 

4.3.5.4 Version Control Selection 

After weighing each of the options the design team selected Github to use for version control. It                 
was clear that Beanstalk would not be used simply because of the price. With the other two                 
options both being sufficient and free, it did not make sense to add to the project cost when we                   
did not need to. Now between Git and Github, we are able to use all of the same version control                    
features with Github as we can with Git. The difference is that with Github we also have access                  
to the web interface which makes commits, pushes and pulls easier to understand. This and the                
fact that we are familiar with Github is what made it the clear choice. 

5.0 Related Standards and Design Constraints 
Engineers need to take account for various constraints when designing and meeting design             
requirements and specifications. Constraints are conditions where the engineers or designers           
need to be worked with or around in addition to desired requirements and goals for the project.                 
Constraints often will set boundaries for the engineers to work with. For instance, big companies               
like Google and Apple will not have the same economic constraints as a start-up company. Time                
constraints limit the creativity and the aspiration in which the project could be. For a senior                
design project, there are multiple constraints such as time, budget, and social that greatly impact               
on the project. Understanding the constraints and the scope of the project will provide team               
members a better feel of the project and generally will perform better. 

5.1 Related Standards 

Standards are technical documents that specify industry normals or requirements. They state            
certain details and characteristics that must be met by all products and systems covered under               
that standard. These standards are set in place to guarantee safety, performance, consistency, and              
connectivity of their products and systems. The table below (Table 15) shows what standards we               
have used for our project design. 
 
 

57 

Technology Standard Description 

Soldering Specification  IPC J-STD-001 Describes materials, methods, and 
verification criteria for a high quality solder 
connections  

Printed Circuit Board 
Specification 

IPC-A-610 Describe acceptable methods for hardware 
installation on PCB assemblies  

RoHs- part components  2002/95/EC Limit the use of lead, mercury, cadmium, 
chromium (VI), PBBs, and PBDEs in 
electrical and electronic components. 
Effective as of July 1, 2006 



 

 
Table 15: Related Standards 

5.2 Environmental and Economic Constraints 

Environmental constraints comprise all external factors that may be interfered with by the             
design, such as pollution. There are many types of pollution such as air, water, soil, light, and                 
noise. Our design doesn’t directly affect any of the types mentioned previously. Since the entire               
system is designed for inside use, the immediate environment is the inside of the users house.                
With the limited operation time and usage, there should be little to no pollution created.               
Indirectly the system can contribute to overall pollution by its power consumption. The system              
will be designed to minimize the power it consumes during operation and during standby.  
 
Economic constraints deal with all aspects in the financial realm of a project. For our design, the                 
budget we set for all expenses is considered an economic constraint. Since there are no sponsors                
for senior design this semester, and we are not working with any sponsors, all project funding                
will come directly from the group members. The amount we are comfortable spending on the               
project will ultimately constrain or define the project’s budget. This constraint limits the             
spending on certain design aspects of our design. We will have to use the research process well                 
in order to best choose hardware that can perform the desired functions and that are cost                
efficient. This means we will also have to keep a detailed list of parts to keep us from                  
overspending.  
 
The market price of the end product is also an economic constraint. Our research needs to                
involve similar product pricing as well as potential customer surveying. We must be able to               
design and produce our product at a competitive price compared to the research findings. Again               
this affects the choice of hardware used in the project design. All higher performance hardware               
parts will directly contribute to the overall cost of our design. This pricing would include               
manufacturing costs as well, but since we are focused on a single working prototype,              
manufacturing costs will not apply.  

58 

Technology Standard Description 

RFID ISO/IEC 20248 Automatic Identification and Data Capture 
Techniques – Data Structures – Digital 
Signature Meta Structure 

WiFi IEEE 802.11 Computer communication in various 
frequencies, including 2.4 GHz, 5 GHz, 6 
GHz, and 60 GHz frequency bands. 

Data Transfer HTTPS  Describes how data being transferred between 
the browser and website will be encrypted 
and secured. 



 

5.3 Social and Political Constraints 

Social constraints comprise the social behaviors and characteristics that can impact or determine             
the sustainability of any project designs or systems within a certain community. Social             
constraints can directly affect who does and does not purchase your products. One social              
constraint that applies to our project is the type of people who would wish to purchase our                 
design. This group of consumers is mostly limited to pet owners of indoor and outdoor pets.                
Another social constraint would be the location of where the consumer lives. Our design has               
security risks involved including replacing the sliding door lock with a door jamb type lock, and                
the security risk of having the door open when no one is home. If a potential consumer lives in                   
an area where crime is high or they just don’t feel safe with the possible risk factors involved,                  
this would affect their decision to purchase the design or not.  
 
Political constraints are all constraints or restrictions of a project imposed by governing officials,              
by law, including individual rights. Our project is designed to be privately owned and operated in                
a private residence. From the research performed, we could not find any laws or regulations on                
the implementation of our design for private use. 
 

5.4 Ethical and Health & Safety Constraints 

Ethical constraints on technology and engineering production can include many issues. These            
can be safety, privacy, sustainability, and autonomy. Sustainability is a relevant constraint for             
our product design. We want to be able to produce a reliable product that will last the consumer a                   
long time. We also want the product to be able to prevent itself from stopping during operation.                 
This will involve designing our hardware in a way it will maximize its lifetime and software to                 
have redundancy checks. For privacy, the audio and visual security measures that come with the               
system have its data sent over WiFi. To prevent privacy violations, possible data encryption              
techniques can be used, as well as private password protected user accounts for the mobile               
application. Since safety is a major concern for all designs, we will talk about it separately. 
 
Health and safety constraints encapsulate all constraints dealing with a product’s user’s physical             
health or the safety of using the product. We have to design around our users and their pets’                  
health. Nothing interior to our design poses a health threat to either the user or the pet. There are                   
however safety concerns that can arise from our design. There are two main safety constraints               
that affect our design. The safety of the pet or users by a malfunctioning door. We must design                  
our door to have fail safes in order to prevent the door from closing on a user or their pet. The                     
second is the safety of the user’s house. Operating an exterior door to someone's residence from                
a remote location is a risk factor. Because of this risk, we have built security measures into our                  
design to help mitigate this security risk. Other health risks could arise from an electrical fire.                
We must design our product using the proper standards for all aspects of the system and make                 
sure that possible faults that could cause fires are minimized.  
 

59 



 

The safety of our users are also under risk from having their personally identifiable information               
stolen from the use of our mobile application or from their home WiFi network. Their data will                 
be stored in a Google Firebase Realtime Database. This data is secured by having customized               
rules that are written by the software development team. These rules would prevent users from               
accessing other users data and other aspects that would not be permitted from the users               
standpoint. Another security aspect to the Realtime Database is authentication, which is the             
process of recognizing the user’s identity. When a user first signs up, authentication would take               
place to ensure that they are who they say they are and then continuously as they log into the                   
application. This would work together with the rules to ensure that the data being passed and                
stored is in the correct place for the correct authorized users. 
 
Authentication does not only apply to the people using the mobile app but we would need it for                  
the Raspberry Pi as well. Since the Raspberry Pi would be reading and writing to the Realtime                 
Database we must ensure that it is only accessing the data it needs just like we would for a                   
person. Instead of a username and password that a person would have, the Raspberry Pi would                
have some type of key that identifies it and makes it distinguishable to the database and the                 
mobile app. 
 

5.5 Manufacturability and Sustainability Constraints 
Manufacturability constraints deal with the concerns of a product’s reliability and efficiency of             
being produced, all at a cost that is sufficient to the manufacturer. Our prototype will be mostly                 
made up of pre-existing parts; the Raspberry Pi, webcam, linear actuator, and sensor modules are               
all existing products we are reusing to construct our prototype. We do have to design and                
implement a printed circuit board for our power solutions, and construct a housing for everything               
to fit into. For the manufacturing of our design, the Raspberry Pi and other sensors can be                 
substituted by a custom computer board, designed for the sensors and peripherals only needed              
for the design. The power can also be incorporated into a single circuit board or the same                 
computer board. This would cost more upfront to design the boards, but then mass producing               
them would be more cost efficient, and also reduce the product size. This reasoning also applies                
to making a single peripheral that handles audio input and output and video. The product design                
also could be adjusted to increase efficiency by making custom motion and identification             
sensors. If we could get the sensors to be a part of the main system housing, the time and ease of                     
installation of our system would decrease dramatically to only placing the housing in the sliding               
door track and attaching the camera with a few screws. 
 
Constraints for product sustainability cover the environmental effects over a product’s life as             
well as any lingering effects after product use has stopped. Since our product is meant for indoor                 
use only the sustainability of our design is quite high. Ors product will not be affected by or                  
affect its immediate surroundings. Our design is also intended to avoid any environmental effects              
outside of the power usage required to operate the system. We have designed our product to                
minimize power usage during idle operation as well as reduce the active operating power usage               
draw.  
 

60 



 

6.0 Hardware Design Details 
This section will lay out all information related to each hardware piece or portion of our project.                 
An overview of our hardware design can be seen below in the hardware overview flowchart               
(Figure 23).  
 

 
Figure 23: Hardware Overview Flowchart 

 
The information given will include the decisions we made for each part of our hardware research                
and how we intend to implement the hardware in our design. Each decision will include a                
reasoning for why the hardware was chosen and each implementation will be described in detail.               
The project design includes a housing that sits inside of a sliding glass door, in the track where                  
the movable door would slide. The housing will have an extendable and retractable arm that will                
connect to the moveable glass door. It will also hold the single board computer and PCBs. The                 
outside of the housing will have an LCD screen as well as LEDs. The housing itself will assist in                   
acting as a door jam or lock for the sliding door, when the housing arm is fully extended.                  
Externally connected from the housing will be a webcam and speaker for audio and visual               
security measures that will be connected to the housing via USB cabling. The webcam is planned                
to be installed above the housing angled towards the sliding door opening. There will also be                
external sensors, RFID and an ultrasonic sensor, that will extend from the housing using copper               
wires. These sensors are planned to be attached to the sliding door opening. The last piece of                 
hardware is a wearable, the RFID tag, which will be attached to the pets collar. 

61 



 

6.1 Single Board Computers 

Our design incorporated a single board computer to be the backbone of the systems operations.               
The single board computer had to be strong enough to process audio and visual data as well as                  
control all external sensors and peripherals. Although the Raspberry Pi 4B doesn’t have the              
fastest processing speed among the single board computers researched, it has more positive ways              
to be incorporated into our design than the others. We chose the Raspberry Pi 4B for two main                  
reasons. The first is that the Pi offers multiple options for internal RAM. Where the other single                 
board computers are limited to a max of 2GB RAM, the Raspberry Pi 4B has 1, 2, 4, and 8 GB                     
options. Our research led us to believe that 4GB RAM is what will be needed to achieve our                  
design goals. The second reason we chose the Raspberry Pi over the others is the vast DIY and                  
hobbyist community that supports it. The community offers guides and tutorials that will be              
helpful to implement our design, and save us time by eliminating trial and error. The Raspberry                
Pi 4 also has more connectivity than the others, which offers us more flexibility in our choice of                  
peripherals.  
 
The Pi is intended to be used primarily for collecting our data and input from peripherals and                 
communicating with a mobile application over WiFi. We plan on powering the computer             
internally, after converting a normal home electrical outlet AC power source. Of the four USB               
ports the Raspberry Pi has we plan on using two of them. The first will utilize USB 3.0 and will                    
connect to a webcam with a built in microphone. The second will be a speaker using USB 2.0.                  
All other sensors and peripherals will be connected through the Raspberry Pi’s GPIO pins. The               
RFID alone requires specific communication protocol (SPI) pins. We need to allocate six total              
pins for the RFID sensor, seven for the LCD display, two for the motion sensor, and six for                  
LEDs. We also need to send signals to our linear actuator, so we have set aside one pin for that.                    
The design for how the Pi will connect to each peripheral or sensor is shown in Table 16 below.  
 
 

62 

Connection Description PIN PIN Description Connection 
 3V3 power 1 2 5V Power  
 GPIO 2 - SDA 3 4 5V Power  
 GPIO 3 - SCL 5 6 Ground  
LCD GPIO 4 - GPCLK0 7 8 GPIO 14 - TXD LCD 
 Ground 9 10 GPIO 15 - RXD LCD 
LCD GPIO 17 11 12 GPIO 18 - PCM_CLK LCD 
LCD GPIO 27 13 14 Ground  
LCD GPIO 22 15 16 GPIO 23 Ultrasonic 
 3V3 power 17 18 GPIO 24 Ultrasonic 
RFID GPIO 10 - MOSI 19 20 Ground  
RFID GPIO 9 - MISO 21 22 GPIO 25 RFID 



 

 
Table 16: Raspberry Pi GPIO Connections 

6.2 Power 

A power supply must fulfill the requirement to power all electrical components on the PCB and                
other parts such as the linear actuator. The research in previous sections has led us to using AC                  
wall power 120 V at 60 Hz due to its low maintenance and reliability. In this project, all                  
components have different voltage and current rating in order to function and be operational.              
Below in Table 17, is a list of all components needed for this project and calls out their voltage                   
and current rating.  
 

 
Table 17: Power Requirement 

  
The 120V 60 Hz power outlet requires dedicated resources to be a viable option for power. This                 
method requires AC to DC conversion. A off-the-shelf wall power adapter simplified the design              

63 

Connection Description PIN PIN Description Connection 
RFID GPIO 11 SCLK 23 24 GPIO 8 - CE0 RFID 
 Ground 25 26 GPIO 7 - CE1 RFID 
N/A GPIO 0 - ID_SD 27 28 GPIO 1 - ID_SC N/A 
Blue LED GPIO 5 29 30 Ground  
Red Led GPIO 6 31 32 GPIO 12 - PWM0 Motor 
Green LED 1 GPIO 13 - PWM1 33 34 Ground  
Yellow LED GPIO 19 - PCM_FS 35 36 GPIO 16 RGB LED 
Green LED 2 GPIO 26 37 38 GPIO 20 - PCM_DIN  
 Ground 39 40 GPIO 21 - PCM_DOUT  

Component Name Voltage Rating Current Rating 

Linear Actuator (Motor) 12 V 5 A 

Raspberry Pi 4 5 V 300 mA 

LCD Display 3.3V - 5 V  < 200 mA 

LED 2V 20 mA 

Ultrasonic Sensor 5V  < 15 mA 

Camera/Speaker 4.5V - 5 V 300 mA 

RFID Sensor  5 V 200 mA 



 

by handling AC-DC conversion to a constant DC voltage. Through a power overview and power               
rollup analysis, the off-the-shelf wall power adapter will be needed to supply 78 watts of power.                
The Raspberry Pi requires 15 watts to operate with its internal components and supports all               
peripherals. With a maximum 50 lb load, the linear actuator draws 60 watts of power. In the                 
Home User Interface, the LCD draws approximately 5 miliwatts.  
 
The requirements of the AC wall power adapter were the capability to deliver 78 watts of power                 
and must have DC voltage level at or greater than the system’s highest voltage requirement               
which is 12 volts. Selecting a AC wall power adapter that is capable of more than 78 watts of                   
power and provides a constant DC voltage and current is ideal. In the final implementation, a 96                 
watt wall power adapter which delivered a constant 12 V and 8 A. was used to satisfy the                  
AC-to-DC power conversion requirement. 
 
Shown in Figure 24 below, the power distribution within the system divided between the three               
separate voltage rails. Through power requirements restricted by the other components in the             
system, three separate voltage rails with the appropriate voltage levels were needed.  

 
 

Figure 24: System Overview Power Distribution based on voltage rails 
 
In comparison to batteries, the power outlet provided practically constant supply of power as              
long as the system is connected to the outlet. Since our product housing is stationary, the best                 
option is to go with the power grid as it’s more dependable and eliminates the cost of replacing                  

64 



 

and disposing batteries. The power requirements for this project, shown in Table 6.2.1, dictated              
the part selection and values.  
 
With a constant DC power from the wall power adapter, a buck and step down converter was the                  
best low cost for a DC-DC conversion with minimal external components outside the integrated              
circuit. Upon examination of Table 17, there was a need for three separate voltage rails: 12 V,                 
5V and 3.3V. Figure 25 below is the schematic that the team has produced for the revision A of                   
the project. 
 

 
Figure 25: Pet Connect Schematic Design 

  

6.3 PCB 

The printed circuit board was designed using Autodesk Eagle software that allows for a              
development of a schematic and a smooth transition into a board layout. One obstacle from Eagle                
was downloading or importing all the necessary libraries needed. A solution to this obstacle was               
to solidify the build of materials (BOM) for this PCB and as a team search for these libraries to                   
reduce the time spent. Using the LTspice, we simulated the behavior of the schematic to validate                
our design. Following the schematic design, we moved forward with a board layout that consists               
of determining the routing of all of the connections. The Autodesk Eagle software greatly eased               
the transition from schematic capture to board layout. 
 

65 



 

The process to create and design a PCB using the Autodesk Eagle software required a significant                
amount of time. This process is critical as the schematic was to house the Home User Interface                 
and to regulate DC power to the linear actuator, microprocessor, and the Raspberry Pi. As the                
main function of the PCB is to regulate and supply power to the linear actuator motor and                 
Raspberry Pi, it’s important to add reference designators and possible test points on the PCB for                
testability of the board. An important consideration in creating schematic is to adhere to good               
engineering practices like making sure all grounds are pointing down and spread out the wire and                
signals to make it easier user friendly.  
 
Another tool introduced in junior design was Webench from Texas Instrument. Webench is an              
online part selector tool that narrows down the selection and provides the footprint file of the                
component which can be easily integrated to Eagle. In addition, we selected surface mount              
components for all parts for this PCB design due to our capacity to access the UCF Senior                 
Design 2 Lab. The UCF Senior Design 2 Lab has a desoldering gun, heat gun, and soldering                 
equipment and materials to fabricate a PCB. 
 
Once the schematic design was finalized, we moved onto the board layout. Eagle ensured all               
connections made in the schematic will be accounted for. The next challenge was determining              
the trace width and part placement. In addition to determining the routing, it’s important to take                
consideration of the components emitting electric and magnetic fields and its effect on other              
components. Trace widths were determined by the amount of current and voltage supplied             
through the connection. In this project, maximum voltage and current rating is 12 V and 5 A. A                  
good PCB practice was to provide tolerations on the trace widths on power traces to account for                 
the  
 
There were different options for fabrication companies varying by price and industry reputation.             
This fabrication process can range from a few days to a few weeks. To ensure that we don’t                  
waste resources and time, we lockdowned the design in advance in hopes of a few errors. With                 
peer review amongst the team, we were able to reduce the amount of errors with the design and                  
be more time efficient.  
 
The final step of this process was to solder our surface mount component onto the designed                
printed circuit board. Through our testing procedure and verification, we were able to determine              
if the fabrication process went successful and true to our design. With reference designators and               
large package footprint, the placement and soldering process was easy. The lack of experience              
with using solder components incentivized us to fabricate multiple copies of the board and              
additional components for the team’s learning curve.  

6.4 Motor 

The mechanism design of this project was the motor and lock system of this project. After                
extensive research, the team decided on a linear actuator as the mechanism lever to open and                
close the sliding door. A linear actuator is a motor that generates thrust and motion in a straight                  
line, in construct to many traditional motors that creates circular movement. A linear actuator              
motor fitted the project needs with some linear movement with a certain amount of force to open                 

66 



 

and close the sliding door.The classic rod linear actuator fitted the bill because of its               
affordability, and its simplicity. The select linear actuator shown below in Figure 26 provides              
around 50 lbs of force and rod extension of 18 inches at 1.25 inches per sec.  
 

 
Figure 26 Classic Rod Linear Actuator 

 
To support the communication between linear actuator and Raspberry Pi, We must use a motor               
driver circuit. The linear actuator is a DC brush motor that produces noise and and requires pulse                 
width modulation signal to operate. The motor driver needs to meet the following requirement in               
order to seamlessly integrate into the system. It must be capable of driving 60 watts of power at 5                   
A current. Since the linear actuator is a DC brush motor, the motor driver must be capable of                  
electrically changing the polarity of the output power to the linear actuator. Due to the potential                
of any noise kicking back from the linear actuator, an output isolation on the motor driver would                 
be ideal. The motor driver’s control pins must be able to toggle through the Raspberry Pi’s GPIO                 
3.3 volt pins and ground. Figure 27 below depicts the motor driver used, DROK Motor Driver,                
and its control pin configuration. An H-Bridge circuit with 4 power mosfets was used on the                
motor driver to change the polarity of the output power. 
 

67 



 

 
Figure 27: DROK 7A 160W H-Bridge Motor Driver 

 
Due to the active low configuration from DROK Motor Driver, the 3.3V logic signal from               
Raspberry Pi will not be compatible with this module alone. A single pole double throw (SPDT)                
relay is used to foster the digital communication between the Raspberry Pi and motor driver. A                
double pole double throw (DPDT) relay may be used instead of an SPDT relay since a DPDT                 
relay is equivalent to two SPDT relays. A latching, DPDT electromechanical relay was used to               
perform an open to ground interface with the Raspberry Pi GPIO pins and Motor Driver control                
pins. A latching electromechanical relay was used to maintain the current position of the relay               
even though the voltage applied to the coil is zero. The position of the signal relay changes if                  
voltage applied to the coil has a different polarity than the current setting. Figure 29 below                
highlighted the Motor Control Circuit used to establish communication between Raspberry Pi            
and linear actuator. 
 

 
Figure 28: Motor Control Circuit Schematic 

68 



 

6.5 Sensors 

Like many autonomous systems, our design needs a reliable way to know when to operate. Our                
product is designed to activate either remotely by mobile application or by the pet at home. In                 
order for the pet to activate the system we need a motion sensor. Our research led to two                  
different motion sensors, the ultrasonic and the PIR. Both of these sensors are previously owned               
by the group, so cost was not a factor in making our final decision. Our design has the motion                   
sensor attached to the sliding glass door, where it is exposed to outside heat and light. Due to the                   
nature that the PIR sensor can be negatively affected by light and temperature, we chose to use                 
the ultrasonic sensor to detect the pets movement near the door.  
 
This motion sensor is planned on being external to the system housing, with a wired connection                
to the Raspberry Pi for communication and power. The HC-SR04 uses 4 lines; VCC, Trigger,               
Echo, and Ground. VCC for the sensor is 5 volts and will be connected to the Raspberry Pi’s 5                   
volt out pin (Pin 2). The Trigger receives a signal that tells the sensor to start detecting. The                  
trigger will be connected to the Raspberry Pi’s GPIO23 pin (Pin 16). The Echo sends a return                 
signal to the source when an entity has been detected. The Echo will be connected to the GPIO24                  
pin on the Raspberry Pi (Pin 18). The ground will connect to ground on the Pi (Pin 14). Below                   
(Figure 29) illustrates the HC-SR04 motion sensor wiring schematic. 
 

 
Figure 29: HC-SR04 Motion Sensor Schematic  

 
To run alongside the motion sensor, we have designed our system to use an identification sensor                
to verify if any detected entity should activate the door opening procedure. We researched              
multiple types of RFID sensors to satisfy this design requirement. Cost wasn’t a factor in our                
choice for this sensor either since all RFID sensors researched were in the same price range. The                 
main factors of our decision were based on the protocols supported by the sensor, the sensing                
range, and the communication protocol it used to relay data. The RFID protocols supported by               
the individual sensors varied greatly, from two protocols, to a handful, to one sensor supporting               
most of them. The PN5180 was the sensor that supported most RFID protocols actively used.               

69 



 

The PN5180 also had the largest sensing range of up to 15cm, which was more than double the                  
range the other sensors offered. All of the sensors communicated via SPI, but the RC522 and                
PN532 also had UART communication options. Ultimately, the vast RFID protocol support and             
the large sensing range of the PN5180 made it the obvious choice for our design. 
 
The RFID sensor needs to be in a position close enough to where the pet would be standing in                   
order to detect and verify the ID, so this sensor will also be externally wired and attached to the                   
sliding glass door. The PN5180 has 13 pins, which are all explained in the Table 18 below. 
 

 
Table 18: PN5180 to Raspberry Pi Connections 

 

6.6 Security Peripherals 

Since our product will be in control of an access point to the users home, we have made specific                   
requirements to ensure their home security. We have planned our design to incorporate audio and               
visual components. From our research we have found multiple different hardware combinations            
to satisfy these security needs.  
 
We have chosen the Logitech webcam over other hardware considerations because it provides             
the system with a visual input that has a high enough resolution without requiring too much                
bandwidth as well as coming with a built in microphone that will satisfy audio input. The last                 
security requirement, audio output, will be fulfilled by the USB Mini Speaker. We chose this               
speaker over the 3.5mm audio jack speaker because it has an internal battery that is charged via                 
the USB connection, whereas the 3.5mm audio jack speaker needs to be charged externally.  
 
The web camera is the last peripheral planned to be located externally from the main housing.                
The attached five foot USB cable gives the user some flexibility on where they can install the                 

70 

PN5180 Pin Description Raspberry Pi Connection 

+5V 5 volt DC supply Pin 2 

+3.3V 3.3 volt DC supply Pin 17 

RST Reset Pin 22 

NSS Non Slave Select Pin 24 

MOSI Master Out Slave In Pin 19 

MISO Master In Slave Out Pin 21 

SCK System Clock Pin 23 

GND Ground Pin 6 



 

camera without purchasing an USB cable extension. The recommended installation point is five             
feet above the main housing, inside the sliding door jam opposite the moveable sliding door. The                
webcam will be directly connected to the Raspberry Pi through the top USB 3.0 connector.  
 
The USB speaker is planned to be a part of the main housing. The speaker comes with a long                   
enough USB cable to reach outside our main housing, so we can attach it to any available                 
housing space. We plan to have it attached or slightly protrude from the main housing’s normal                
(upwards) facing. The speaker will connect to the Raspberry Pi through either the bottom USB               
3.0 connector or the top USB 2.0 connector. All security peripheral connections are shown in               
Table 19 below. 
 

 
Table 19: Security Peripheral Connections  

6.7 LEDs 

Our product design is mostly an autonomous system, which means every operation is done by               
the machine itself. Outside of the mobile application controls, the user has no operational control               
of our system. This means that there is no indication as to what is happening in the system at any                    
given time. In order to help the user know what the system is doing or not doing, we plan to                    
incorporate LEDs to our main housing that will help visually display the system operations and               
modes. The group already owns a number of single color LEDs as well as a RGB LED and an                   
LED matrix. The LEDs will be built into the systems main housing on the interior facing. The                 
chart below, Table 20, displays each LED function and representation. 
 

 
Table 20: LED to Raspberry Pi Connections 

71 

Peripheral Description Raspberry Pi Connection 

Logitech Webcam USB 3.0 USB 3.0 (Top) 

Mini USB Speaker USB 2.0 USB 2.0 (Top) 

LED Operation Connection 

Blue System On Pin 29 

Red System Mode Pin 31  

Green Entity Detected in Range Pin 33  

Yellow Scanning ID Pin 35  

Green ID Accepted Pin 37  

RGB Door Opening/Closing Pin 36  



 

6.8 LCD 

To go beyond what the LEDs provide the system and its users, we have integrated an LCD                 
screen as a second visual indicator of system operations. Although the serLCD and OLED have               
more functionality built into the hardware, we have chosen the LCD 1602. We made our               
decision based on the fact that the group already owns one and that we all have previous                 
experience in using this model. The LCD 1602 offers sixteen characters by two lines, which is                
enough to display all intended messages properly.  
 
The LCD screen itself will also be attached to the main system housing, on the interior facing.                 
The LCD 1602 will be directly connected to the Raspberry Pi by GPIO pins and without using                 
any communication protocols. It requires five volts for operating power, a ground, and seven              
data lines. The LCD to Raspberry Pi pin connections are shown below in Table 21. 
 
 

 
 Table 21: LCD 1602 to Raspberry Pi Connections 

 

72 

LCD Pin Description Raspberry Pi Pin 

VSS Ground Pin 14 

VDD 5V DC Supply Pin 4 

VO Potentiometer Pin 7 

RS Register Select Pin 8 

RW Read / Write -  

E Clock Enabled Pin 10 

D0 - D3 Bits -  

D4 Bit 4 Pin 12 

D5 Bit 5 Pin 11 

D6 Bit 6 Pin 13 

D7 Bit 7 Pin 15 

A LED Anode +  Pin 4 

K LED Cathode -  Pin 14 



 

7.0 Software Design Details 

In this section we will discuss software design and development implemented in our project.              
Software plays an important part that’s basically a dashboard for managing and controlling             
devices connected to it. This dashboard collects information from sensors and sends signals to              
users to operate activities. Our software design was divided into six main parts which include               
software prototype, mobile application, use case diagram, user interface, class diagram, database            
design, and wireless communication. Figure 30 below shows our general flowchart for the             
project.  

 

Figure 30 : General Project Flowchart 

73 



 

The flowchart begins with the door being closed and locked and then looks for the pet to be at                   
the door. Depending on the mode that the user has the system in, it will then take the appropriate                   
action. This would include alerting and asking the owner if it’s in Away Mode, opening the door                 
if it’s in Home Mode, or simply staying closed if it’s in Closed Mode. This process then repeats                  
as the owner can change the setting in the mobile app. Understanding this diagram was important                
when designing the mobile app that allows the user to navigate through the flow of our system. 

 

7.1 Android Mobile Application 

The mobile app is used as our control panel which users will interact to send commands to the                  
system. We decided to build Native Android development application to run on an android              
device. Native Android apps can take full advantage of software and the OS’s features,              
especially direct access to the hardware of the device such as camera and microphone which are                
the main components used in operating the system for this project. Moreover, Native apps are               
faster in execution since we prefer to use real-time databases which ultimately result in better               
user experience. We choose Android studio as the platform to develop the mobile app. Java is the                 
language that commonly uses and supports Android Studio. Android app contains multiple app             
components including activities, fragments, service, content providers, and broadcast receiver. In           
addition, android studio has built-in support for integrating Google Cloud service and Firebase             
which is the database that we chose to implement in our software development. 

We start our mobile application design by selecting the right architecture. We want mainly use of                
the internet, Mobile app, and Android SmartPhone to be interconnected. If the smartPhone has              
no internet connection the users will not be able to use the application or receive and update any                  
fetch data. This limitation for offline mobile applications can be further implemented in the              
future but for the scope of our design, our mobile application will rely on the internet connection.                 
Moreover, our main functionality relies on Push notifications as well as real- time updates and               
ability to access built in features on the smartphone. In Figure 29 below is Android Mobile App                 
Architecture to support our Software design. 

The architecture in Figure 31 shows how each layer interacts with one another. We tend to logic                 
more in view because they are responsible for handling notifications from the model. Activities              
and fragments only depend on the view model. Activity and Fragment are classes that represent               
contracts between Smartphones and the app. These classes should only contain logic that handles              
UI. Models are the components that handle data from the app and we want our design to be                  
based on drive UI from persistence model so they’re unaffected by the app’s lifecycle.              
ViewModel provides data for specific UI which can call other components to load data and can                
forward user requests to modify any data. In addition we want our UI to be able to access                  
LiveData state from the camera. This is to ensure that LiveData can only update app               
components that are active states. LiveData classes will be included in the viewmodel. 

74 



 

 
Figure 31: Android Mobile App Design Architecture. 

 
 
7.1.1 Android Studio 

After we conducted our research and concluded that we will implement an Android Mobile app,               
we chose the Android Studio platform as our IDE. The best features of Android Studio use in                 
our software system helps to give a real-time experience with IOT based project development.              
We want to build–high quality application and this is also the reason we use Firebase               
connectivity to support scalability. Android studio has a feature called “New Module Wizard”,             
this is advanced technology that delivers instant results without taking time to rebuild the apk               
and installation make. This is very important in our app testing because we want our app to be                  
able to change the state if there is trigger event or data fetch, moreover with camera, audio, and                  
device control that may change state instantly require the user to see the change in the app                 
immediately Another factor that takes in consideration is that Android has a fast emulator. This               
is a great feature of the Emulator which is exactly like an android smartphone. It’s given                
real-time experience to the android applications and helps the development life cycle be shorter              
and efficient. 

7.1.2 Java Language 
 
Android studio supports Java language to use in Android development. Based on our             
development team coding experience we decide to use Java as our preferred language in writing               
code in our app design. Java is the most popular choice for developing Android mobile               
applications and it supports Android Studio. To create the app that connects and interacts with               

75 



 

peripheral and support use experience in our application we need to list available peripherals to               
connect hardware directly to the app. Java has many frameworks and classes for features in our                
project such as I/O operations that require different peripherals in the function, threading and              
internet network that developers can leverage these qualities features of Java to develop IOT app               
development. In addition, an Android application uses Java Virtual Machine (JVM) to generate             
and run Android executable (APK). And JVM reads Java byte so no need to recompile it for                 
every hardware. To write the data to create the app we will need MainActively class to list all                  
available Port. We can use a system service called PeripheralManager to manage Peripherals             
connection. Beside user interface design that we can use to benefit from Android studio drag and                
drop features we also can write our own Java Code to cooperate with the design. To handle the                  
Button events state transition will generate call back events with setEdgeTriggerType () method             
and register GpioCallback to receive trigger events. 
 
7.1.3 Mobile App Flowchart 
 
In any software development it is common to use a flowchart to represent all of the different                 
possibilities that could arise during the use of that application. Figure 32 below is the flowchart                
for the Android app that we developed. Unlike the general project flowchart in the Software               
Design introductory section, this flowchart covers only the mobile app and provides more detail              
with each action. It should be noted on the legend to the left of the diagram showing what each                   
symbol represents. 
 
The chart starts off with how the user enters the app and first determines if the user has already                   
made an account. If they did not, they go through the signup process and the data is added to the                    
database. If they do then they can login or have already been logged in and come to another                  
option in the chart. The ‘Notification Received?’ option represents the user interacting with the              
app by just opening it with the ‘No’ option or getting the alert that their pet is at the door with the                      
‘Yes’ option. With the user opening the app they first see the control screen and have the option                  
to navigate to any of the other two screens. All of three require initial reads from the database to                   
display the appropriate data. The Profile screen also gives the users the ability to edit their                
information which is then updated in the database. From the control screen the user can interact                
with the speaker and camera peripherals, change their current mode, open or close the door               
directly, or simply just view the data. The way each of these options are handled are shown in the                   
diagram as an interaction with the peripherals requires connecting directly with the Raspberry Pi              
but changing a mode would just update the database.  
 
The other path for interacting with the mobile app would be when the notification is received.                
When opened, the user would be shown the live video from the camera and be asked if they want                   
to allow the door to open, letting their pet outside. If they do not allow it then the flow just goes                     
back to the ‘Notification Received?’ option. If they do allow it then the database is updated to                 
reflect the decision and the door will open.  
 
This diagram helped the software development team when it came time to program all of the                
necessary functionalities of the app. Understanding this and the other aspects of our software              

76 



 

design mentioned throughout this section were crucial in developing the correct and functional             
mobile app. 
 
 

 
 

Figure 32 : Mobile App Flowchart 

77 



 

7.2  Use Case Diagram 

In our software design, we want to collect all steps done by users so building a use case will help                    
capture the interactions between users and the system which is associated with it. Use case               
diagrams are also called behavioral diagrams that describe the business system and record how              
the user interface responds to the system. Figure 33 is the use case diagram for Software                
Interface of Android Application.It demonstrates the functionality of the system and describes            
the behavior sequence of steps in which each step specifies actions. Our use case diagram is                
designed based on section 2 for software Goal.  

When users first launch the applications, users have the ability to create an account to login to                 
use the application. We design to have an email address as username and password as well as                 
name of users and phone number which we can use further for step of verification as needed. If                  
users already have an account created, they can just directly start using the application. Inside the                
application, users now can store their pet information and address location. Users have the ability               
to manage device setting to set up the Home Mode to Disarmed, Home, and away mode. The                 
main function is that users can receive notification which trigger further actions to operate the               
device which are access to camera view, using audio and speaker phone, operate open or close                
the door. Finally, users should have the ability to view the status of doors for security                
enhancement. 

 

 
Figure 33: Basic Use Case for Software 

 

78 



 

7.3 User Interface Design (UI) - WireFrame 

As we mentioned, we wanted the mobile app to be a dashboard that is the main control of the                   
device. The user interface therefore needed to support user experience and develop with ease of               
use and optimization. Figure 34 shows the user interface design for our mobile app. 

Our mobile app user interface is divided into four different views. The first screen is the User                 
Login page. This page consists of a username and password input box. New users screen is                
applicable to create their account by inputting new username, email, and password. The second              
screen is the user profile screen, this is a data screen that collects necessary information from                
account owner and pet information including petID for. The page has an option for users to                
edit/delete information and logout from the app. Third, Control page which is a main dashboard               
for the app. This user interface includes important functions that allow users to view the camera,                
access audio and speaker phone, control door, set mode, view door status and receive              
notifications. The last screen is the activity log screen which extends information to set mode and                
status mode. The screen indicates specific date and time on the screen to track activities from the                 
door and pet. 

 

 
Figure 34: User Interface Design for Mobile Application 

 

7.4 Class Diagram  

We demonstrate a high level of software design by creating Unified Modeling Language Class              
diagrams to better determine modeling and documenting the flow of the software. Figure 35              

79 



 

shows class diagrams illustrate work flows of our design. The workflow started by             
Login/Registration class which requires further validation before moving to the next steps. For             
security purposes we implement the user's access by validating their login information. That             
information is then stored in the database to use for future authentication every time users login.                
Next, the User class holds various methods that are used to implement the software functions.               
Users class will retrieve information from the database to display, verify, and operate necessary              
actions from users. AddPetData is the class that indicates pet information and pet status if the                
pet is inside or outside the house. Last, Activity Log class will get current date and time and                  
output necessary messages related to mode and status of the applications. 

 

 
 

Figure 35: Class Diagram for Software Design 
 

7.5 Database 

As previously mentioned, we implemented Google Firebase as our database system. This            
brought up two options: the Cloud Firestore or the Realtime Database. Both of these options               

80 



 

offer realtime updates that do not require a server to deploy or maintain. They are both also free                  
to use for the purposes of our project but also both have the options to be billed based on the                    
usage. Realtime Database is Firebase’s first database and uses JSON trees to structure its data.               
The original purpose was to make the development of mobile applications that require             
synchronized data across all of the clients easier. Cloud Firestore is the newer database option               
and was built based off of the Realtime Database. Its data is organized as a collection of                 
documents and aims to provide faster and more complex queries. The Cloud Firestore is made               
for applications that are data heavy and need advanced querying on large amounts of data.               
Considering we needed our database to mainly store some basic information and to communicate              
the status of the pets and doors, the Realtime Database was the more sensible option and what we                  
decided to use. 

Figure 36 depicts the layout of how we organized the Realtime Database. Our initial database               
design had us organizing the data into three different trees. The first is the Users which holds the                  
basic user information like the username, password and email where username is the key for that                
branch and the Activity branch. These fields are strings along with PetID which is the key for the                  
Pets branch. Other information in the Users branch are Sound which is an Int and the                
IsDoorOpen and IsViewingStream variables which are both Booleans. 

 
 

Figure 36: Database Design Tree 

In the Pets branch we stored the PetID and some boolean values in IsPetInside and IsPetAtDoor                
to signal where the pet is in relation to our system. The Activity tree is the more of a side feature                     
as it holds an activity log for each of the users in the system. Again the username is the primary                    

81 



 

key in this branch. These things were more of a stretch goal unlike the other two trees which                  
were needed for our system to work properly. The Activity tree was anticipated as being altered                
throughout the design process. This information was spread out to another tree instead of              
including it in the Users tree because it makes the data structure flatter. If we did lump the two                   
trees together this could cause longer reading times as the entire child is loaded to the client                 
when a node is accessed. The possibility of the data log would add a lot of unneeded data to be                    
loaded when the user is just trying to do something like changing the current mode. The                
separation of these branches was also a way to organize the data in a more readable way. 

This data needed to be stored so the developers could display the necessary information to the                
user and to also send information back and forth between the Raspberry Pi and the Java app.                 
During the signup process the user enters the required information such as, username, password,              
email, and their pet name. The pet name is used as the PetID and can be thought of as a username                     
for the pet. New nodes are then created in the Realtime Database in each of the three trees. When                   
the data needs to be accessed, the developers access it by calling the correct path to the needed                  
node. For example, when trying to get a user’s current mode, the path would be the Firebase                 
root, then the Users node, the Username node, and finally the CurrentMode node. For data that                
was essential to the system’s updating components such as Sound, IsPetInside, IsPetAtDoor, and             
IsDoorOpen another approach to reading the data needed to be taken. These data fields needed to                
have listeners that performed certain actions any time a change is made by either the Raspberry                
Pi or the mobile app. An example of this would be when the pet is at the door and the owner is in                       
Away mode, the Raspberry Pi updates the Firebase IsPetAtDoor field to true. The listener for               
this item in the Java application is then triggered and a notification is sent to the user. A similar                   
process would take place for the other important information in the system and happen from both                
the mobile app and the Raspberry Pi. 

7.6 Security and Authentication 

Authentication and authorization are very crucial when it comes to security vulnerabilities. Our             
application stores important data relevant to home access which can be dangerous to the users in                
case the device phone has been lost or stolen. Mobile application authentication is the              
verification of a user's identity to secure access when users use a mobile device. Our app                
provides users with access to remote service, so we design app authentication using             
username/password authentication to be performed at the remote end point. Firebase provides a             
backend service that allows users to sign up and authenticate against multiple providers.             
Authentication SDK can easily integrate with drop-in UI flows. In our login authentication, we              
prefer to use a custom authentication system and option of Sign in with a pre-built UI.                
FirebaseAuth object will initialize Firebase Authentication. When users sign in for the first time,              
new accounts which include username and password, and phone number are stored in the              
Firebase project to use across the application. This action is created linked to the credential. In                
the event of users forgetting their username or password, Email Link Authentication is the option               
for users to authenticate their owner by using their email address. Figure 37 below shows               
sequence authentication diagram communication between application, backend server and         
database. 

82 



 

 

 

Figure 37: Sequence Diagram for Application Authentication 

7.7 Wireless Communications 

Since our project consisted of automating the process of letting a pet go outside, communication               
was key to the project's success. From a software standpoint we had three items that needed to be                  
in sync with one another, which was the Android mobile application, the Raspberry Pi, and the                
Firebase Realtime Database. The pet owner uses the mobile app to get alerts about the system in                 
their home and communicate with it to do things like allowing the door to open. Both the app                  
and the Raspberry Pi update the Realtime Database to make sure that everything has the most up                 
to date information. Figure 38 depicts the software technologies that we use to make this happen.                
We see that there is a path from the mobile application directly to the Raspberry Pi. This is due                   
to the fact that not all of the data that is being passed around should go through the Realtime                   
Database. The live video feature gave us the need to have a communication path that does not                 
need to go through Firebase. The two arrows coming from below the Raspberry Pi in the                
diagram represent any of the hardware connections that we made in order for the Pi to                
communicate with the peripherals. Given that this section is focused on software, these             
connections did not need to be depicted for this diagram. The following subsections describe              

83 



 

each technology, the data they are responsible for, and the components of the system that they                
are interacting with. 

 

 
Figure 38: Wireless Communications Diagram 

 
 
7.7.1 Google Firebase Android SDK 

For the purposes of connecting the database to the mobile app we used Google Firebase’s               
Android SDK [FIRE2]. This has all of the methods that we needed to read and write data to the                   
database. Table 22 lists out some of the methods from the Android SDK that are relevant to our                  
project. There are a few classes that should be noted for this implementation. The              
FirebaseDatabase class allowed us to first get an instance of the database that we will be working                 
with. The DatabaseReference class then allowed us to reference specific nodes and build paths              
throughout that database instance. These were both essential in implementing basic read and             
write functionalities from the Java programs. Writing data simply is handled by the             
DatabaseReference class with the setValue method. Reading data is more complicated as we             
need to add a ValueEventListener object to a DatabaseReference object first. Then when the data               
is changed on that node the onDataChange method is triggered and performs any of the actions                
that we have programmed into it. At that point we can then call the getValue method on a                  

84 



 

DataSnapshot object to read the data. This is what our program needed in order to alert the user                  
that their pet is at the door. The Raspberry Pi changes a value in the database which triggers the                   
onDataChange method. This method then uses the Android notification system to alert the user. 

 

Table 22: Table of Android SDK Methods [FIRE2] 

85 

Name Parameters Return Type Description 

getInstance None FirebaseDatabase Returns an instance 
of the configured 
database 

getReference None or (String 
path) 

DatabaseReference Returns a reference 
to the root node of 
database or the 
specified node in 
database 

child (String 
pathString) 

DatabaseReference Returns the 
reference to the 
parent’s child node 

setValue (Object value) void Sets the value at the 
current reference 
node to the object 
value passed 

getValue None Object Returns the object 
that is at the 
reference node that 
triggered the 
DataSnapshot 

onDataChange DataSnapshot void Called every time 
that data is changed 
at a specific 
database reference. 

addValueEventListener ValueEventListe
ner 

void Adds a 
ValueEventListener 
to a 
DatabaseReference 



 

7.7.2 Pyrebase 

Unlike the Firebase Android SDK, Python and the Raspberry Pi are not natively supported by               
Google Firebase. However, there are open source third party libraries that allow Python             
programs to connect and interact with Firebase. One of those is Pyrebase by James              
Childs-Maidment which is what we implemented on our Raspberry Pi to allow it to communicate               
with our Realtime Database. Again, the functions from Pyrebase that are related to our program               
design and implementation are listed in table 23. The process was overall the same as with the                 
Android SDK. We first configured a dictionary that was needed to connect to the database with                
the initialize_app and database functions. From there we created different paths to different             
nodes in our database with the child method as needed throughout the programs. To write data,                
there is a set method which is implemented in the same way as its Java counterpart. For reading                  
data, the get and val methods were used together to first return a PyreResponse object on the                 
node and then return the value that the node is holding. We also had the ability to have the                   
python program continuously listen for data changes by using the stream and a stream_handler              
methods. The stream method first needs to be attached to a node in the database then when that                  
node’s data changes the stream_handler method takes the actions that we program. This was              
important in our implementation of having the Raspberry Pi react based on what the user is                
controlling through the app. 
 
 

 
Table 23:  List of Pyrebase Relevant Functions [PYRE] 

86 

Name Parameters Return Type Description 

initialize_app dict : config Void Initializes the 
firebase reference 
with the contents of 
config 

database None Database Returns a database 
object for our 
Realtime Database 

child str : path Database Returns the new 
reference to the 
parent’s child node 

set Object : data Void Sets the value at 
that node reference 
to data 

get None or Object : 
token 

PyreResponse Returns the data 
from the current 
path 



 

 

Table 23:  List of Pyrebase Relevant Functions [PYRE] (cont) 
 

 
7.7.3 Socket Programming and Dataplicity 

Most of the data being passed around was going to be stored, read from and written to the                  
Realtime Database as mentioned in the previous two sections. There are however certain features              
of our system that involved data being transferred to and from the mobile app and the Raspberry                 
Pi that did not need to be going through Firebase. That would be when the user is using the app                    
to look at the live video feed from the webcam. We originally thought the user would be sending                  
messages to the speaker from the mobile but we changed the implementation to have the user                
select a message to be played that was pre recorded and saved on the Raspberry Pi. To do this we                    
used the Sound variable in Firebase instead of using Socket Programming or Dataplicity. 

One option we had to make this happen was to configure the Raspberry Pi as an Access Point                  
and then connect to it by running a server program on the Raspberry Pi and a client program                  
from the mobile application. This would have involved using socket programming to connect the              
client to the server by linking up the same IP address and port number on both programs. This                  
would have then allowed the two endpoints to send the data back and forth, for the video feed.                  
This was thought to be a good solution but to make it work when the client is on a different                    
network, for example away from the house, port forwarding would have been required to have               
that IP address and port number public so the mobile app can connect to it. Port forwarding                 
would route anyone trying to access that socket to the correct IP address and port combination                
which would be the Raspberry Pi. This would require the user to do some configurations on their                 
home router and turned out to not be a good idea for security reasons as it would have given                   
anyone access to the user’s home network. Even if configuring the port forwarding of the               
Raspberry Pi was not an issue there was still the problem of the security. 

87 

Name Parameters Return Type Description 

val None Object Returns the data 
from a 
PyreResponse 

stream Stream_handler Stream Attaches a stream 
handler to a 
specific node in the 
database. 

stream_handler str : message Void Listens to the live 
changes from 
Firebase 



 

Instead of using sockets to transfer the video, we also considered using Motion, which is a tool                 
that is commonly used in camera surveillance projects. This would connect to the camera, stream               
the video and take away the need for the client and server programs in sharing the live video.                  
Instead the mobile app would look up the socket that is set up through motion and then it would                   
have access to the video. Again, the port forwarding would have been needed and we would have                 
ran into the same issues with configuration and security as the first option. 

One alternative was to just upload the video to the database from the Raspberry Pi and then                 
continuously read from the mobile app that way. This had a possibility of working but would be                 
costly in terms of taking up storage in the database and would have shown a delay from the real                   
video and the video being displayed through the mobile app. 

The solution we found and used was Dataplicity tools of Hawkeye and Wormhole. Dataplicity is               
a tool that allows people to access the command line of a Raspberry Pi remotely. An account is                  
needed to link to the specific Raspberry Pi. Then we just needed internet access and a web                 
browser to open up a terminal remotely. For the video streaming aspect, Dataplicity Hawkeye is               
used to handle streaming the video locally hosted on the Raspberry Pi. We then use Dataplicity                
Wormhole to take that locally hosted web page and make it public with a unique URL. This URL                  
is specific to the user. An improvement of Pet Connect would be to use two Dataplicity API calls                  
to create the user’s Dataplicity account, with their consent during the signup process on our               
Android app. With another API call we would be able to retrieve the unique URL from there                 
account. We then use this URL to embed the video into the mobile Android app with an Android                  
WebView. This solved both issues of having the user to configure their home router a specific                
way and also not have their home network open to attacks. 

Dataplicity turned out to be the best solution for implementing the video feature and all of the                 
other options mentioned in the section served as backups. As ease of use and security were two                 
of the most important items with our project design it made the most sense to use Dataplicity for                  
streaming the live video feed. 

8.0 Prototyping 

Prototyping can be a very beneficial step in any design process as it gives the design team a                  
visual example to work off of. Once they have a prototype, certain aspects of the design can                 
become clearer and the appropriate changes can be made. Prototyping is also a way for the                
design team to present an unfinished version of the project to the client or customer. Since a lot                  
of times this person is not always technologically advanced the prototype is a good indication of                
what the product is going to end up being. From this they can make the changes and suggestions                  
that they feel is necessary. In this section we discuss the bill of materials, our printed circuit                 
board designs, and our software prototype based on our initial designs. 

88 



 

8.1 Part Acquisition and Bill of Materials 

Engineers design and develop a schematic drawing and outline functions of a project. The build               
of materials (BOM) is beneficial to people outside the developing team and the team themselves.               
A bill of material is a comprehensive list of raw materials, parts, components needed in addition                
to the quantities of each to manufacture one product. In early stages, engineers stay to finalize                
the schematic drawing as well as the bill of materials as the preparation and the time to obtain all                   
of the materials and parts may take time. Many engineering projects have deadlines and parts’               
lead time is another unexpected time constraint needed to take into account.  
 
Many electrical components can be found in large distributors like Digikey and Mouser. Due to               
the complexity and scope of the project, we anticipate not receiving a discount on components               
since we only need a small quantity. It’s a good engineering practice to purchase a couple extra                 
inexpensive components like resistors, capacitors, and inductors in case any complications come            
up. Digikey and Mouser make it easy for engineers to search and select components through               
their search engine.  

8.2 Software Prototype 

The software prototyping consisted of taking the wireframe design from the User Interface             
Design section and creating the user interface in Android Studio. While the functionality was              
implemented in the building phase of our project, the screenshots below served as a second draft                
of the user interface design after the wireframes. User interface is very important to software               
development because if it is not a good design the user will have trouble accessing all the                 
features that we include in the mobile application. Figure 39 below shows the three main screens                
of the mobile app. From left to right they are the Activity, the Control, and the Profile screens.                  
While there are other screens that we made these three had a slightly higher priority because they                 
deal with the everyday usage of the app. This was not the final product as is stated in the section                    
title it was just the first prototype. We used this to make more design decisions on what the user                   
interface should look like and how it should work. 
 
When thinking of design we always wanted the user to know the current status of their home                 
system. The Control screen is where they are able to see these statuses and also make changes to                  
the current mode and open or close the door. In the prototype we had three buttons at the top of                    
the page for the three modes. The working design displays the current mode where the ‘Current                
Mode’ text is shown. The button of the mode the system also stays highlighted as another                
indication. Below that the door toggle button is used to both indicate the current state of the door                  
and allow the user to change the status by tapping on it. The pet status is also set up the same                     
way in this first prototype but the software design team was considering changing it to only show                 

89 



 

the status of the pet and differentiate it from the door toggle. While we liked the layout of the                   
prototype, the style of the screens needed to be adjusted. This made it easier for the user to see                   
the current screen they are on as well as providing a better overall visual experience while using                 
the application. These are all things that the software team took into consideration as we moved                
forward with the design and implementation stages. 
 
 
 

 
Figure 39: Software Prototype Images 

 

9.0 Testing 
Troubleshooting and testing are crucial steps in the design verification. To reduce all errors and               
unexpected failures, one needs hands-on verification testing of every component in the system to              
ensure the product will meet standards and expectations. Test Engineering is a growing             
professional field that aims toward determining a procedure or method to best test a product. Test                
engineers also contribute during early stages and prototype stages to ensure the testability of the               
product. Electrical test equipment, such as oscilloscopes and multimeters, are used to aid test              
engineers. Oftentimes, test engineers will work with the developing team which consists of             
engineers of different disciplines to create a design verification testing (DVT) document.  

90 



 

9.1 Hardware Testing 

Hardware testing is vital in the design process. It’s important to validate individual components 
and ensure that each component works on its own. Problems can be isolated through this process. 
Once the validation for all individual components is successful, integration of systems such as 
populating the PCB. 
 
9.1.1 Printed Circuit Board (Bare board Test) 
Purpose: 
 
The purpose of bare board testing of the PCB is to ensure the bare PCB meets the electrical                  
design expectation. By performing an isolation testing and continuity testing, one can ensure that              
the PCB meets its expected electrical design expectation. The following bare board test will be               
divided into two tests: Isolation and Continuity Test. Please perform the preparation stated below              
individually at the start of each test (Isolation and Continuity Test) 
 
Supplies: 
 

● Bare board PCB 
● Schematic drawing 
● Multimeter 
● Test leads 
● Electrostatic Discharge (ESD) wrist strap  
● ESD mat 

 
Preparation: 
 

● Properly ground tester with a ESD wrist strap to ESD mat 
● Connect positive and negative leads to its corresponding location on the multimeter 
● Turn off and on multimeter and turn it to a ohmmeter 
● Test the multimeter by touching the positive and negative lead together (the multimeter             

should be reading roughly zero ohms) 
 
Isolation Test Procedure: 
 

● Using the ohmmeter, measure the resistance between the following locations on the board             
presented on Table 24 

● With the following locations express in Table 24, ohmmeter should be measuring a large              
resistance 100 Megaohms 

 
 
 

91 



 

Table 24: Isolation Test  
 

92 

Location 1 Location 2 Examiner Resistance Measured > 100 Megaohms 

J1 - pin 4 J2 - pin 1 Michael OL Yes 

C1 - pad 1 IC1 - pin 2 Michael OL Yes 

IC1 - pin 2 C4 - pad 1 Michael OL Yes 

C14 - pad 1 C3 - pad 2 Michael  OL Yes 

J3 - pin 1 J3 - pin 2 Michael  OL Yes 

J3 - pin 1 J3 - pin 3 Michael  OL Yes 

J3 - pin 1 J3 - pin 4 Michael  OL Yes 

J3 - pin 1 J3 - pin 5 Michael  OL Yes 

J3 - pin 1 J3 - pin 6 Michael  OL Yes 

PS1 - pad 1 PS1 - pad 2 Michael  OL Yes 

PS1 - pad 1 PS1 - pad 3 Michael  OL Yes 

PS1 - pad 1 PS1 - pad 4 Michael  OL Yes 

PS1 - pad 4 PS1 - pad 6 Michael  OL Yes 

J2 - pin 1 J2 - pin 2 Michael  OL Yes 

J2 - pin 1 J2 - pin 3 Michael  OL Yes 

J2 - pin 1 J2 - pin 5 Michael  OL Yes 

J2 - pin 1 J2 - pin 6 Michael  OL Yes 

J2 - pin 1 J2 - pin 7 Michael  OL Yes 

J2 - pin 1 J2 - pin 10 Michael  OL Yes 

J2 - pin 1 J2 - pin 15 Michael  OL Yes 

J2 - pin 1 J2 - pin 20 Michael  OL Yes 

J2 - pin 2 J2 - pin 3 Michael  OL Yes 

J2 - pin 2 J2 - pin 4 Michael  OL Yes 



 

Continuity Test Procedure: 
 

● Using the ohmmeter, measure the resistance between the following location on the board             
on Table 25.  

● With the following locations, ohmmeter should be measuring a zero or negligible            
resistance  

 
 

 
Table 25: Continuity Test  

 
9.1.2 Power 
 
Purpose: 
 
The purpose of testing the AC to DC power conversion circuit on the PCB as it is a system                   
critical circuit. The following critical circuitry will provide stable DC power to the             
microcontroller and all other peripherals on this product. It is important to ensure that this               
circuitry meets the design requirements. 
 

93 

Location 1 Location 2 Examiner Resistance Measured <  1 ohms 

J1 - pin 3 J1 - pin 4 Michael - N/A 

J1 - pin 1 J1 - pin 2 Michael - N/A 

J1 - pin 2 C13 - pad 2 Michael - N/A 

C13 - pad 2 C1 - pad 2 Michael - N/A 

C3 - pad 1 L1 - pad 1 Michael - N/A 

L1 - pad 2  J3 - pin 3 Michael - N/A 

C9 - pad 1 J3 - pin 1 Michael - N/A 

PS1 - pad 1 C5 - pad 2 Michael - N/A 

C8 - pad 1 C7 - pad 1 Michael - N/A 

C8 - pad 2 C7 - pad 2 Michael - N/A 

L2 - pad 2 R3 - pad 1 Michael - N/A 

C11 - pad 2 C12 - pad 2 Michael - N/A 

C11 pad 2 R4 - pad 2 Michael - N/A 



 

Supplies: 
 

● Populated PCB 
● Power Source (wall plug) 
● Schematic drawing 
● Multimeter 
● Test leads 
● Electrostatic Discharge (ESD) wrist strap  
● ESD mat 

 
Preparation: 
 

● Properly ground tester with a ESD wrist strap to ESD mat 
● Connect positive and negative leads to its corresponding location on the multimeter 
● Turn off and on multimeter and turn it to a ohmmeter 
● Test the multimeter by touching the positive and negative lead together (the multimeter             

should be reading roughly zero ohms) 
Procedure: 

● Use multimeter to verify AC Wall Power 
● Verify AC-DC wall adapter with the schematic drawing.  
● Plug in wall power to PCB. 
● Use the multimeter to check the stable DC 12 volts output from the AC wall adapter. 

 
9.1.3 Motor 
 
Purpose: 
 
The purpose of testing the motor is to ensure that the linear actuator was to provide the amount                  
of thrust or force needed to operate the sliding door mechanism. A test to check the motor’s                 
capability to resist linear external force to check the linear actuator’s ability to keep the sliding                
door lock from external forces. In addition, testing the communication between the Raspberry Pi              
to motor driver and signal relay was critical. 
 
Supplies: 
 

● PCB 
● Linear Actuator (motor) 
● Sliding door 
● Power Source (wall plug) 
● Multimeter  
● Test leads  
● Code 

 
Preparation: 

94 



 

 
● Ensure the PCB has pass the PCB bare board test shown 9.1.1 and all components have                

placed on the PCB 
● Ensure PCB has pass the power test shown in Section 9.1.2 
● Connect positive and negative leads to its corresponding location on the multimeter 
● Turn off and on multimeter and turn it to a ohmmeter 
● Test the multimeter by touching the positive and negative lead together (the multimeter             

should be reading roughly zero ohms) 
● Create and upload the code for the motor to the Raspberry Pi 

 
Procedure: 
 

1. Attach linear actuator based on the following setup below (Figure 40) 
2. Power on the PCB 
3. Check on Raspberry Pi is on 
4. Download code to Raspberry Pi 
5. Turn on Raspberry Pi to close door or extend shaft 
6. Observe the movement of the linear actuator shaft extend 
7. Turn on Raspberry Pi to open sliding door or contract shaft 
8. Observe the movement of the linear actuator’s shaft contract 
9. Fill out the Table 26 below with the results. 

 

 
Figure 40: Linear Actuator Test Setup 

 
 

95 



 

 
Table 26: Linear Actuator Test Summary  

 
9.1.4 RFID Sensor 
 
Purpose: 
 
The purpose of testing the RFID sensor is to observe if the sensor can read RFID tags and notify                   
the system when a positive ID is read.  
 
Supplies: 
 

● Raspberry Pi 
● PN5180 RFID Sensor 
● RFID Tag 
● Code 
● Wires 

 
Preparation: 
 

● Create and upload the code for the RFID sensor to the Raspberry Pi. 
● Connect the sensor to the Raspberry Pi using the wiring table shown below (Table 27) 
● Place the sensor in an environment similar to the project’s design placement. 

 

Table 27: PN5180 to Raspberry Pi Wiring Table 

96 

 Description of linear actuator Pass/Fail 

Step 6 Shaft extends or sliding door closing PASS 

Step 8 Shaft contract or sliding door open  PASS 

PN5180 Pin Description Raspberry Pi Connection 

+5V 5 volt DC supply Pin 2 

+3.3V 3.3 volt DC supply Pin 17 

RST Reset Pin 22 

NSS Non Slave Select Pin 24 

MOSI Master Out Slave In Pin 19 

MISO Master In Slave Out Pin 21 

SCK System Clock Pin 23 



 

 
Table 27: PN5180 to Raspberry Pi Wiring Table  (cont) 

 
Procedure: 
 

1. Power on the Raspberry Pi 
2. Observe that the sensor is actively taking readings. 
3. Observe that the initial sensor output is set to 0. 
4. Place an unregistered ID tag within sensor range.  
5. Observe that the RFID sensor reads the tag by seeing it display the tag ID to the console. 
6. Observe that the sensor output remains at 0. 
7. Place a registered ID tag within sensor range. 
8. Observe that the RFID sensor reads the tag by seeing it display the tag ID to the console. 
9. Observe that the sensor output changes to 1. 

 
9.1.5 Ultrasonic Sensor 
 
Purpose: 
 
The purpose of testing the HC-SR04 ultrasonic sensor is to observe if the sensor properly               
recognizes movement, and only notifies the system when that movement is within one meter              
from the door. 
 
Supplies: 
 

● HC-SR04 Ultrasonic Sensor 
● Raspberry Pi 
● Code 
● Wires 
● A pet-sized object 

 
Preparation: 
 

● Create and upload the code for the ultrasonic sensor to the Raspberry Pi.  
● Connect the sensor to the Raspberry Pi using the wiring diagram shown below (Figure              

41) 
● Place the sensor in an environment similar to the project’s design placement. 

 

97 

PN5180 Pin Description Raspberry Pi Connection 

BUSY Busy State Pin 26 

GND Ground Pin 6 



 

 
Figure 41: Wiring Diagram for HC-SR04 to Raspberry Pi 

 
Procedure: 
 

1. Power on the Raspberry Pi 
2. Observe that the sensor is actively taking readings. 
3. Observe that the initial sensor output is set to 0. 
4. Place the pet-sized object in sight of the sensor but out of the one meter signaling range. 
5. Observe that the sensor recognizes the object. 
6. Observe that the sensor's output signal still reads 0. 
7. Move the pet-sized object within the one meter signaling range. 
8. Observe that the sensor recognizes the object. 
9. Observe the sensors output signal changes to 1, to notify the system that motion has been                

detected within the systems signaling range.  
 
 
9.1.6 Audio and Visual 
 
Purpose: 
 
The purpose of testing our audio and visual peripherals is to observe if they turn on and off when                   
they are prompted and if they appropriately transmit their media.  
 
Supplies: 
 

● Logitech Webcam 
● USB speaker 
● Raspberry Pi 
● Code 
● Audio file 
● External web browser 

 

98 



 

Preparation: 
 

● Connect the Logitech webcam to the top Raspberry Pi’s USB 3.0 port. 
● Connect the USB Speaker to the top USB 2.0 port. 
● Configure Raspberry Pi to use both USB devices. 
● Place both peripherals in an environment similar to the project’s design placement. 

 
Procedure: 
 

1. Connect power and turn on Raspberry Pi. 
2. Use shell commands to turn on the webcam. 
3. Observe that the webcam has been powered on. 
4. Enter the associated IP address for the Raspberry Pi’s camera output in a web browser. 
5. Observe that the web browser now shows a live feed from the webcam.  
6. Make noise in the area of the camera’s microphone. 
7. Observe that the noise is output to your browser. 
8. Use shell commands to turn off the webcam and turn on the speaker. 
9. Play audio file. 
10. Observe that the audio file is transmitted from the USB speaker. 

 
9.1.7 LCD 
 
Purpose: 
 
The purpose of testing the LCD screen is to see that it displays the correct messages according to                  
what operation the system is performing.  
 
Supplies: 
 

● 1602 LCD screen 
● Raspberry Pi 
● Code 
● Wires 

 
Preparation: 
 

● Create and upload the code for the LCD display to the Raspberry Pi.  
● Connect the LCD to the Raspberry Pi using the wiring diagram shown below (Table 28) 
● Place the LCD screen in an environment similar to the project’s design placement. 

 
 
 
 
 

99 



 

Table 28: LCD 1602 to Raspberry Pi Wiring Table 
 
Procedure: 
 

1. Power on the Raspberry Pi 
2. Observe that the LCD screen displays the idle message according to the message table.              

(Table 29) 
3. Wait for 30 seconds. 
4. Observe that the LCD screen lowers its brightness. 
5. Use code to simulate entity detection inside of activation range. 
6. Observe the LCD screen displays the proper detection message according to the message             

table. 
7. Use code to simulate the entity verification process is running. 
8. Observe the LCD screen displays the proper verification message according to the            

message table. 
9. Use code to simulate that the entity verification process has identified an invalid tag. 
10. Observe the LCD screen displays the proper identification message according to the            

message table. 
11. Use code to simulate that the entity verification process has identified a valid tag. 

100 

LCD Pin Description Raspberry Pi Pin 

VSS Ground Pin 14 

VDD 5V DC Supply Pin 4 

VO Potentiometer Pin 7 

RS Register Select Pin 8 

RW Read / Write -  

E Clock Enabled Pin 10 

D0 - D3 Bits -  

D4 Bit 4 Pin 12 

D5 Bit 5 Pin 11 

D6 Bit 6 Pin 13 

D7 Bit 7 Pin 15 

A LED Anode +  Pin 4 

K LED Cathode -  Pin 14 



 

12. Observe the LCD screen displays the proper identification message according to the            
message table. 

13. Use code to simulate that the door opening process has been allowed. 
14. Observe the LCD screen is displaying the proper door operation message according to the              

message table. 
15. Use code to simulate that the door opening process has begun. 
16. Observe the LCD screen is displaying the proper door operation message according to the              

message table. 
17. Use code to simulate that the door closing has begun. 
18. Observe the LCD screen is displaying the proper door operation message according to the              

message table. 
19. Use code to simulate that the system is transitioning back to the idle state. 
20. Observe that the LCD screen displays the idle message according to the message table.  

 
 

 
Table 29: LCD Message Display per System Operation 

 
9.1.8  LEDs 
 
Purpose: 
 
The purpose for testing the LEDs is to make sure that the system can visually represent each                 
operation and that the associated LED to that operation functions properly. 
 
Supplies: 

101 

System Operation LCD Display Message 

Idle between activations “System Idle” 

Motion detection  “Entity Detected” 

RFID Entity Verification “Verifying…”  

RFID Tag is invalid/unrecognized “Entity invalid, Return to idle” 

RFID Tag is valid “ID accepted, Notifying User” 

Door Opening Allowed “Permission Granted” 

Door is opening “Opening...” 

Door is closing “Closing...” 

Door cycle is completed “Operation Complete” 
“Returning to idle” 



 

 
● Raspberry Pi 
● LEDs (1 RGB, 1 Blue, 1 Red, 1 Yellow, 2 Green) 
● Code 
● Wires 

 
Preparation: 
 

● Create and upload the code for the LEDs to the Raspberry Pi.  
● Connect the LEDs to the Raspberry Pi using the wiring diagram shown below (Table 30) 
● Place the LEDs and resistors on a breadboard. 

 
 

 
Table 30 LED to Raspberry Pi Wiring Table 

 
Procedure: 
 

1. Power on the Raspberry Pi. Default system mode is “Remote.” 
2. Observe that the blue and red LEDs function according to the LED behavior table below               

(Table 31) 
3. Use code to change the system mode to “Home.” 
4. Observe that the red LED functions according to the LED behavior table. 
5. Use code to simulate that an entity is within detection range. 
6. Observe that the green 1 LED functions according to the LED behavior table. 
7. Use code to simulate that the system is scanning for and identifying the RFID tag. 
8. Observe that the yellow LED functions according to the LED behavior table. 
9. Use code to simulate that the system accepted the RFID tag. 
10. Observe that the green 2 LED functions according to the LED behavior table. 
11. Use code to simulate that the system is opening the door. 
12. Observe that the RGB LED functions according to the LED behavior table. 
13. Use code to simulate that the system is closing the door. 

102 

LED + Connection - Connection  

Blue Pin 29 via 1kΩ Resistor Pin 39 - Ground 

Red Pin 31 via 1kΩ Resistor Pin 39 - Ground 

Green Pin 33 via 1kΩ Resistor Pin 39 - Ground 

Yellow Pin 35 via 1kΩ Resistor Pin 39 - Ground 

Green Pin 37 via 1kΩ Resistor Pin 39 - Ground 

RGB Pin 36 via 1kΩ Resistor Pin 39 - Ground 



 

14. Observe that the RGB LED functions according to the LED behavior table. 
 

Table 31: LED Operation and Behavior Table 
 
9.1.9 Hardware Testing Checklist 
 
The checklist below in Table 32 served to help us complete the testing phase in the next course. 
It was used to keep track of the status of each test case that was designed in the previous 
subsections. By separating out the individual hardware components, we isolated any possible 
problems that might arise. This will stop major issues when it comes to bringing the other 
components of the project together.  
 

Table 32: Hardware Testing Checklist Summary 

103 

LED Operation Behavior 

Blue System On LED on 

Red System Mode “Remote” LED on 

Red System Mode “Home” LED off 

Green 1 Entity Detected in Range LED on 

Yellow Scanning ID LED Flashes 

Green 2 ID Accepted LED on 

RGB Door Opening/Closing LED Flashes/Changes Color 

Test Examiner Test Date Pass/Fail 

Bare Board - 
Isolation 

Michael  11/24 Pass 

Bare Board - 
Continiuty  

Michael & 11/24 Pass 

3.3V & 5V Voltage Michael & Ryan 11/25 Pass 

Motor Control Circuit Michael  11/25 Pass 

RFID Sensor Graham & Ryan 11/4 Pass 

Ultrasonic Sensor Graham & Ryan 11/4 Pass 

Audio and Visual Graham & Ryan 11/4 Pass 



 

Table 32: Hardware Testing Checklist Summary (cont) 
 

9.2 Software Testing 

We needed to ensure that our software application works properly and each component has been               
tested to determine if there are any issues. Unit Testing is the process of checking a small piece                  
of code to ensure that the functionality of the application can be delivered correctly. We also                
conducted integration testing where independent development units get tested together. This is            
very common in software development as the unit tests would need to be passed before the                
integration tests can begin. This is because one bug that could be caught in a unit test could cause                   
multiple errors in an integration test. The debugging process would be more complicated this              
way and less efficient. In this section we describe the various tests we performed and the results                 
based on observation throughout the database console, mobile interface, and raspberry Pi            
terminal. 
 
9.2.1 Registration 
 
Purpose: 
 
The purpose of this test was to ensure that the registration process was working correctly. When                
the user goes into the application without an account the app needs to take them through all of                  
the necessary steps and then add that new user to the Realtime Database. 
 
Supplies: 
 

● Android Studio Emulator or Android Device 
● Google Firebase Realtime Database 
● RFID Tag 

 
Preparation: 
 

● Properly configure and implement the Google Services Plugin into the Android Studio 
Project. 

● Configure the Realtime Database with the appropriate security rules. 

104 

Test Examiner Test Date Pass/Fail 

LCD Ryan & Michael 12/4 Pass 

LEDs Ryan & Michael 12/4 Pass 



 

● Create the user interface android screens that will be displayed to the user and capture all 
of the user’s input. 

● Create the necessary back end code that deals with adding new users to the database. 
 
Procedure: 
 

1. Open the Mobile App on an emulator or connected Android device. 
2. Select ‘Create Account’ 
3. Enter in test user information 
4. Enter in test pet information 
5. Tap the ‘Submit’ button 
6. Check on the Firebase Console for the new user to be shown. 

 
 
 
 
9.2.2 Login 
 
Purpose: 
The login sequence needed to be tested in order to make sure that a user who already has an 
account can come back to use the app with all of their correct data. 
 
Supplies: 
 

● Android Studio Emulator or Android Device 
● Google Firebase Console 

 
Preparation: 
 

● Properly configure and implement the Google Services Plugin into the Android Studio 
Project.  

● Configure the Realtime Database with the appropriate security rules. 
● Create the user interface android screens that will be displayed to the user and capture all 

of the user’s input. 
● Create the necessary back end code that deals with adding new users to the database. 

 
Procedure: 
 

1. Open the Mobile App on an emulator or connected Android device. 

105 



 

2. Select ‘Log In’ 
3. Enter a test user’s username and password. 
4. Check the profile screen for the correct user information 
5. Check the control screen for the correct modes and status that the test user last left the 

system in. 
 
9.2.3 Add /Edit /Delete 
 
Purpose: 
 
The purpose of this test was to ensure that data is getting updated in the database and showing on                   
the mobile application screen correctly. When the users perform add, edit or delete actions on               
any data in the application, the Firebase should reflect these updates. 
 
Supplies: 
 

● Android Studio Emulator or Android Device 
● Google Firebase Realtime Database 

 
Preparation: 
 

● Properly configure and implement the Google Services Plugin into the Android Studio 
Project. 

● Configure the Realtime Database with the appropriate security rules. 
● Create the user interface android screens that will be displayed to the user and capture all 

of the user’s input. 
● Create the necessary back end code for all add, edit, and delete actions for the database. 

 
Procedure: 
 

1. Open the Mobile App on an emulator or connected Android device. 
2. Enter sample data like address information to test ‘Add’ data, click ‘Save’ 
3. Check the Firebase console to see if address information has been added 
4. Go back to the mobile application and view address information on screen. 
5. Edit address information and click ‘Save’ 
6. Check the Firebase console to see if address information has been changed. 
7. Go back to the mobile application and observe if the address has been updated. 
8. Delete address information from the application. 
9. Check on the Firebase Console if data has been deleted. 

106 



 

10. Go back to the application and observe for deleted data no longer available. 
 
9.2.4 Push Notification 
 
Purpose: 
 
The purpose of this test was to ensure that the server successfully sends push notifications to                
users as mobile alter that pop up on the mobile device when there is any update or read new data                    
from the Database. 
 
Supplies: 
 

● Android Studio Emulator or Android Device 
● Firebase Cloud Message (FCM) SDK. 

 
Preparation: 
 

● Properly configure and implement the Google Services Plugin into the Android Studio            
Project.  

● Configure the Realtime Database with the appropriate security rules. 
● Retrieve and access device’s registration token from Firebase Cloud Messaging SDK. 
● By calling FirebaseInstanceId.getInstance().getInstanceId() 
● Send and store token in the app server using Firebase Instance ID to authenticate and               

authorize actions. 
 
Procedure: 
 

1. Open the Mobile App on an emulator or connected Android device. 
2. Ensure the app is in the background on Android device 
3. Open the notification composer and select New notification. 
4. Enter text message and select Send test message 
5. In the field labeled Add an FCM registration token and enter the registration token 
6. Click Test 
7. Users tap on notification to see if notification is delivered to device’s system tray 

 
9.2.5 Mobile App Camera Access 
 
Purpose:  
 

107 

https://firebase.google.com/docs/reference/android/com/google/firebase/iid/FirebaseInstanceId


 

The purpose of camera testing was to ensure that the application can access the Logitech camera 
that is placed in their home. Users should be able to see the live video feed through the Android 
app. 
 
Supplies: 
 

● Android Studio Emulator or Android Device 
● Raspberry Pi 
● Logitech Webcam 
● Dataplicity 

 
Preparation: 
 

● Properly configure and implement the Google Services Plugin into the Android Studio 
Project.  

● Enable camera software in Raspberry Pi and connect the camera to the CSI port. 
● Have the video stream start when the Raspberry Pi is turned on 
● Create a Dataplicity account so the tester can access the Wormhole URL. 
● Create preview class to display live data coming from camera so tester can capture a 

picture or video 
 
Procedure: 
 

1. Check the Wormhole URL address in a web browser to make sure the video stream is 
running. 

2. Open the Mobile App on an emulator or connected Android device. 
3. Tap on the access camera on the application  to display the WebView screen. 
4. Observe on the display screen if there is any picture or live data has been captured on 

Android Device. 
 
9.2.6 Mobile App Audio Access 
 
Purpose:  
 
The purpose of the testing the mobile app audio was to check that a sound could be selected 
through the mobile and then played through the home speaker.  
 
Supplies: 
 

108 



 

● Android Device 
● Raspberry Pi 
● Google Firebase 
● USB Speaker 

 
Preparation: 
 

● Properly configure and implement on the Android Studio Project.  
● Launch Media Controller Test 
● Properly configure and implement the Google Services Plugin into the Android Studio 

Project. 
 
Procedure: 
 

1. Open the mobile app through Android Studio or an Android device. 
2. Tap on the Microphone button to bring up the sound options. 
3. Tap on any of the three sounds and observe the sound being played through the speaker 

and the ‘sound’ variable being updated in Firebase. 
 
9.2.7  User Interface and Gui 
 
Purpose: 
 
UI testing was conducted to ensure that UI elements like buttons, input box, selection fields,  and 
images are verified and have proper appearance on the screen. Color and style font should be 
invisible and have a consistent look to build users friendly between application and users. 
 
Supplies: 
 

● Android Studio Emulator or Android Device 
 
Preparation: 
 

● Properly configure and implement the Google Services Plugin into the Android Studio 
Project.  

● Ensure that the emulator is set for Android phone configuration to get a proper size 
screen and resolution when the application is run on a real smartphone device. 

 
Procedure: 

109 



 

 
● Test screen orientation, observe if screen can rotate in both portrait and landscape mode 
● Test if loading in progress is visible when page loading when activating device from              

smartphone app 
● Test if  Home mode button for on - off if can be clicked with any kind of touch 

or slide. 
● Check and test under the activity menu if it can display different log activities. 
● Check and test under the user profile  menu if users' information list displays properly.  
● Test for camera and audio button can turn on and off. 
● Test for each page if it can navigate properly. 

 
9.2.8 Mobile App Database Connection 
 
Purpose: 
 
This test case handled the testing of reading and writing to the database from the Android App. 
This focused on the aspects of updating the necessary fields for the everyday use of the system. 
 
 
Supplies: 
 

● Android Studio Emulator or Android Device 
● Google Firebase Realtime Database 
● Google Firebase Console 

 
Preparation: 
 

● Properly configure and implement the Google Services Plugin into the Android Studio            
Project.  

● Link the correct Realtime Database with the Android Studio Project. 
● Configure the Realtime Database with the appropriate security rules. 
● Create the user interface android screens that will be displayed to the user and capture all                

of the user’s input. 
● Create the necessary back end code that deals with getting and updating information in              

the database. 
 
Procedure: 
 

1. Open the Mobile App on an emulator or connected Android device. 

110 



 

2. Make sure that a test user is logged in. 
3. Enter a test user’s username and password. 
4. Open the Google Firebase Console in another window. 
5. Test the updating to the database by changing the current mode and closing or opening               

the door. 
6. To test the app reading from the database, change the current mode manually in the               

Google Firebase Console. Also change the pet name manually in the console.  
 
9.2.9 Raspberry Pi Database Connection 
 
Purpose: 
 
This test case handled testing of reading and writing to the database from the Raspberry Pi. This                 
again focused on the everyday use of the system such as the current status of the door. 
 
Supplies: 
 

● Google Firebase Console 
● Raspberry Pi 

 
Preparation: 
 

● Properly configure and implement the Google Services Plugin and the Realtime Database 
keys in the python file. 

● Configure the Realtime Database with the appropriate security rules. 
● Create the necessary back end python code that deals with getting and updating 

information in the database. 
● Create a test program that makes some simple updates to the database. 
● Make another test program that has stream listeners on the CurrentMode, isDoorOpen 

and isPetAtDoor variables. 
 
Procedure: 
 

1. Open the Google Firebase Console. 
2. Open a terminal on the Raspberry Pi with a connected screen. 
3. Call a test script to test that the code is updating values in the Realtime Database such as 

the CurrentMode string, the isDoorOpen boolean or the isPetAtDoor boolean. 
4. Run the second test code and manually change one of those values in the Firebase 

Console. This test code should  ensure that the stream listener is set up and print a 

111 



 

message to the terminal. This message would simulate the Raspberry Pi controlling an 
aspect of the home system. 

 
9.2.10 Control System With Raspberry Pi 
 
Purpose: 
 
The purpose of this test case was to make sure that the Raspberry Pi software was properly                 
controlling the peripherals of the home system. 
 
Supplies: 
 

● Raspberry Pi 
● MSP430 
● LCD Screen 
● LEDs  
● Motor 
● Speaker  
● Camera 

 
Preparation: 
 

● Configure all of the hardware components with the necessary connections, circuitry and 
software settings. 

● Configure the Realtime Database with the appropriate security rules. 
● Write the necessary programs that interact with each of the hardware components listed 

in the above supplies section. 
● Write simple test programs to invoke each of the hardware components. 

 
Procedure: 
 

1. Open a terminal on the Raspberry Pi and with a connected screen. 
2. Run the test programs to ensure that the following tasks are completed successfully: 

a. Send a message to the MSP430 and display it on the LCD screen 
b. Turn on/off the LEDs 
c. Turn the linear actuator on and off 
d. Play a test sound on the speaker 
e. Have the video stream start when the Raspberry Pi turns on. 

112 



 

 
9.2.11 Read Sensor Information From Raspberry Pi 
 
Purpose: 
 
While the previous test case aimed to look at the Raspberry Pi writing and updating the hardware                 
components this test case focuses on the Raspberry Pi software reading from the necessary              
sensors. 
 
Supplies: 
 

● Raspberry Pi 
● RFID Sensor 
● RFID Tag 
● Ultrasonic Sensor 

 
Preparation: 
 

● Configure all of the hardware components with the necessary connections, circuitry and 
software settings. 

● Configure the Realtime Database with the appropriate security rules. 
● Write the necessary programs that interact with each of the hardware components listed 

in the above supplies section. 
● Write simple test programs to invoke each of the hardware components. 

 
Procedure: 
 

1. Open a terminal on the Raspberry Pi and with a connected screen. 
2. Run test programs or simple print statements to complete each of the following tasks 

a. Print the distance of an object in front of the Ultrasonic Sensor. 
b. Use the RFID to check that the RFID sensor is recognizing the RFID tag. 
c. Test the Ultrasonic and RFID sensors together by placing an object in front of the 

Ultrasonic sensor and display that the tag was not recognized. 
d. Repeat task c, with an object that has the RFID tag attached to show that the 

Ultrasonic and RFID sensors are working together to recognize the RFID tag. 
 
9.2.12 Integration 
 
Purpose: 

113 



 

 
This served as a test of the overall system. While the other test cases isolate certain aspects of the 
software system this will look at the different components working together as a whole. 
 
Supplies: 
 

● Android Emulator or connected Android device. 
● Raspberry Pi 
● Linear Actuator 
● RFID Sensor and Tag 
● LEDs  
● LCD 
● Audio and Visual Peripherals 

 
Preparation: 
 

● Configure all of the hardware components with the necessary connections, circuitry and 
software settings. 

● Configure the database for both the Raspberry Pi and the Android app along with the 
necessary security rules for each. 

● Complete the necessary code for the mobile app and the Raspberry Pi. 
 
Procedure: 
 

1. Power on the Raspberry Pi. 
2. Open the mobile app on the emulator or connected device. 
3. Test that the door opens and closes by tapping on the door toggle button on the mobile 

app. 
4. Make sure the system is in the Away Mode. 
5. Use the RFID on a petsized object to trigger a notification to the phone. 

a. Make sure that the live video is displayed when this notification is opened. 
b. Observe that the door opens or closes based on the user’s input. 

6. Change the current mode to Home in the Android app. 
7. Use the RFID tag and the pet sized object to make sure that the door opens automatically. 
8. Change the mode to Closed. 
9. Use the RFID tag to make sure that the door does not open. 
10. With each step make sure that the mobile app, the LEDs and the LCD screen are all 

updating correctly. 

114 



 

9.2.13 Software Testing Checklist 
 
When it came time to start testing the software components of Pet Connect we used the 
following checklist in table 33. This allowed us to tentatively plan out when each test should 
have been performed as well as give us a good understanding of which test cases needed to be 
passed before moving on to other components to test. This gave the software development team a 
chance to go back and fix any bugs or issues that we ran into before moving on. With the test 
cases defined in the above subsections we were able to see exactly what needed to be done on 
that specific aspect of the software. 
 

Table 33: Software Testing Checklist Summary 

115 

Test Examiner Test Date Pass/Fail 

Registration Joy 10/25 Pass 

Login Joy 10/25 Pass 

Add/Edit/Delete Joy 10/25 Pass 

Push Notification Joy 10/25 Pass 

Camera App Joy 10/25 Pass 

Audio App Joy 10/25 Pass 

UI and Gui Joy 11/18 Pass 

App Database 
Connection 

Ryan 11/18 Pass 

Raspberry Pi 
Database Connection 

Ryan 11/18 Pass 

Control System With 
Raspberry Pi 

Ryan and Graham 11/18 Pass 

Read Sensor from 
Raspberry Pi 

Ryan and Graham 11/18 Pass 

Integration Ryan and Joy 11/25 Pass 



 

10.0 Administrative Content 
 
This section is dedicated to the project management that comes along with any major group               
project. This is important as we needed to be as organized as possible to ensure that everyone                 
was on the same page. The milestones allowed everyone to know where we were at in the project                  
and the deadlines that we had set both for ourselves and for on time submission. The budget and                  
finances section deals with the price of any of the hardware parts or software tools that we                 
needed to purchase before we began the implementation phase. Finally the responsibilities            
section lays out what each team member contributed to the overall design process. Following              
these outlines helped us deliver a functioning design on time. 

10.1 Milestones 

In order to keep our team on schedule for project completion we created and used milestones.                
Instead of focusing on overall project completion, we used these milestones to center our              
attention on smaller tasks that built up to the overall project completion. We first had to decide                 
on what the smaller tasks should be. We used previous projects and the divide and conquer                
assignment to help guide our choices. Each task or “milestone” is assigned a date range for                
completion, followed with the current status of that milestone. The responsibilities of each             
milestone are individual, multiple individuals, or the whole group. What follows are two tables              
that represent our groups milestones for both semesters of Senior Design, with Senior Design 2               
to be updated when applicable. 
 

116 

Reference # Milestone Dates Status Responsibility 

Senior Design 1     

1 Project Ideas 5/11 - 5/15 Completed Individual 

2 Divide and Conquer 5/18 - 5/29 Completed Group 

3 Group meeting with Dr. 
Richie 

6/2 Completed Group 

4 Research requirements 
and preliminary 
components 

6/3 - 6/28 Completed Group 

5 Hardware Research 
(LED, LCD) 

6/3 - 6/28 Completed Ryan 

6 Hardware Research 
(Single Board Comp, 
Sensors, Peripherals) 

6/3 - 6/28 Completed 
 

Graham  



 

117 

Reference # Milestone Dates Status Responsibility 

7 Software Research 
(Mobile application, 
Development 
Environment, 
Development 
Languages) 

6/3 - 6/28 Completed Joy 

8 WiFi Communication 
Research 

6/3 - 6/28 Completed Joy, Ryan 

8 Software Research 
(Databases, Version 
Control) 
 

6/3 - 6/28 Completed Ryan 

9 Hardware Research 
(Power Supply and 
Distribution, Motors, 
Locking Mechanism) 

6/3 - 6/28 Completed Michael  

10 Submit 60 page draft 6/3 - 7/3 Completed Group 

11 Meeting with Dr. Richie 7/6 Completed Group 

12 Begin writing draft 
paper for SD1 100 Page 
Report 

6/30 - 7/17 Completed Group 

13 Software Design 
(Databases, Wireless 
Communications) 

6/30 - 7/17 Completed Ryan 

14 Software Design 
(Mobile application, 
Development 
Environment, 
Development 
Languages) 

6/30 - 7/17 Completed Joy 

15 Hardware Design 
(Single Board 
Computer, Sensors, 
Security Peripherals) 

6/30 - 7/17 Completed Graham 



 

 
Table 34: Senior Design 1 Milestones 

 

 
Table 35: Senior Design 2 Milestones 

118 

Reference # Milestone Dates Status Responsibility 

16 Hardware Design 
(Power Supply and 
Distribution, Motors, 
Locking Mechanism) 

6/30 - 7/17 Completed Michael 

17 100 Page Report Due 7/17 Completed Group 

18 PCB Layout 7/20 Pending Michael 

19 Final Documentation 7/28 Completed Group 

20 Part Order 7/28 Pending Group 

Reference # Milestone Dates Status Responsibility 

Senior Design 2     

1 Finalize prototype 8/24 - 9/30 Completed Group 

2 CDR presentation Due 9/18 Completed Group 

3 Post CDR Meeting 9/30 Completed Group 

4 Troubleshooting/Testing 10/1 - 11/6 Completed Group 

5 Mid-Term Demonstration 11/9 Completed Group 

6 Form Review Committee 11/1 - 11/20 Completed Group 

7 Conference Paper Due 11/20 Completed Group 

8 Final Presentation Due 11/29 Completed Group 

8 Final Demo Video Due 11/29 Completed Group 

9 Review Committee 
Meeting 

12/2 Completed Group 

10 Final Documentation and 
Website 

12/8 Completed Group 



 

10.2 Budget and Finance 

When we started this project we estimated a budget of $500. We have agreed to split all costs                  
evenly between all group members. The following parts were sourced from Amazon, Adafruit,             
Texas Instruments, as well as some are already owned by a group member. The below table, Bill                 
of Materials, is tentative and subject to change. All software design for front and back end will                 
be done using free license software products. The prices are listed as of June 30 2020 and we                  
plan on ordering the parts at the end of the semester or early August, and will update                 
accordingly.  
 

Table 36: Bill of Material 

119 

Part Unit Cost Quantity Total Cost 

Raspberry Pi 4B with 
USB-C power supply 

$63 1 $63 

HC-SR04 Ultrasonic 
Sensor 

Owned 1 $0 

PN5180 NFC RFID 
Module with tags 

$12 1 $12 

Logitech Webcam $40 1 $40 

USB Speaker $14 1 $14 

PCB $63.33 1 $63.33 

1602 LCD Display Owned 1 $0 

Digikey Parts for PCB $104.83 1 $104.83 

Motor/Linear Actuator $110 1 $130 

Drok Dual H Bridge 
Motor Driver 

$15.79 1 $15.79 

96W Power Supply 
Adapter 

$17.99 1 $17.99 

Prototype Door Frame - 
Wood 

$20 1 $20 

    

Totals $480.94  $480.94 



 

10.3 Responsibilities 

The responsibilities section provides a detailed breakdown of how each group member            
contributed to the project’s hardware or software design. This individual breakdown has sub             
categories where the members have contributed to. They are research, design, testing, and other.              
The list that follows shows what each member of our group contributed (either cooperatively or               
individually) to the project. 
 
Graham Goerg 
 
Research: 

● Single Board Computers 
● Motion Sensors 
● Identification Sensors 
● Security Peripherals 

 
Design: 

● Single Board Computer 
● Motion Sensor 
● RFID Sensor 
● Security Peripherals 
● LEDs 
● LCD 

Testing: 
● RFID Sensor 
● Ultrasonic Sensor 
● Camera 
● Speaker 
● LCD 
● LEDs 

 
Other: 

● Hardware/Software Goals 
● Requirements and Specifications 
● House Of Quality 
● Related Standards 
● Design Constraints 
● Milestones  
● Budget and Finance 

 
 
Joy Weaver 
 
Research: 

120 



 

● Mobile Application 
● Development Environment 
● Programing Languages  
● iOS Exclusive Development 
● Android Exclusive Development 
● Raspberry Pi OS 

 
Design: 

● Mobile App Architecture 
● Android Studio 
● Java Language 
● Uses Case Diagram 
● User Interface 
● Class Diagram 
● Security and Authentication 

 
Testing: 

● Add/ Edit/ Delete 
● Push Notification 
● Mobile App Camera Access 
● Mobile App Audio Access 
● User Interface and Gui 

 
 
Other: 

● Function 
● Project Operation Manual 
● House of Quality 
● Similar Projects 

 
 
Ryan Flynn 
 
Research: 

● LCDs 
● LEDs 
● Wifi Modules 
● Databases 
● Wireless Communication 
● Version Control 

 
Design: 

● Class Diagram 
● User Interface 
● Mobile App Flowchart 

121 



 

● Database 
● Wireless Communication 

 
Testing: 

● Register 
● Login 
● Mobile App Database Connection 
● Raspberry Pi Database Connection 
● Control System With Raspberry Pi 
● Read Sensor Information 
● Integration 

 
Other: 

● Project Description 
● Motivation 
● Goals and Objectives 
● Software Prototype 
● Conclusion 

 
 
Michael Choi 
 
Research: 

● Power Supply 
● Batteries  
● AC Power  
● PCB 
● Motor 
● Lock 

 
Design: 

● Power  
● PCB 
● Motor 

 
Testing: 

● Prototype  
● PCB Bare Board Test 
● Power 
● Motor 

 
Other: 

● Executive Summary 
● Requirement and Specifications 
● Hardware Design Details 

122 



 

10.4 Project Conclusions 

With the completion of Senior Design 1, our group was set to start building and implementing                
the Pet Connect system. We started off by taking the ideas, research, and design from Senior                
Design 1 and continued to improve them throughout Senior Design 2. We ended up giving a                
solution to the problem pet owners face of letting their pet outside when they are away from the                  
house. After we had an initial prototype we began testing our designs to see what was working                 
and what needed to be changed. This allowed us to complete the project to meet our milestones                 
and the multiple due dates. 
 
We have researched many different aspects and options for the parts and tools we wanted to use.                 
From a hardware standpoint we looked at motors, power, single board computers, locks, senors,              
LCDs, LEDs and wifi modules. After looking at numerous options for each of these aspects we                
were able to make well informed design decisions with each of them. The same process was                
done on the software side with the research of mobile platforms, development environments,             
development languages, databases, wireless communications and version control systems. Doing          
this research and taking into account the skills and experience of the development team made               
designing the software for the system a simpler task. These steps were necessary for both the                
hardware and software teams to help us start brainstorming for the design and get a better sense                 
of the technologies that we needed to complete the intended functionality of our project. 
 
The design process consisted of taking the parts, technology, and tools that we looked at in the                 
research phase, and determining which were the best ones to use. We were then able to use these                  
decisions to come up with plans of how we were going to implement them. This ranged from                 
making schematics, flowcharts, and tables for the hardware components while we made more             
flowcharts, tables, class diagrams, wireframes, and prototypes for the software. While we may             
have wanted to jump right into making the product the design phase made us slowdown and                
think about the possibilities with each design decision. This was more efficient as we had the                
whole project planned out instead of starting to write code in the very beginning and running into                 
roadblocks.  
 
As we ran into different problems along the way we adapted and took the best possible solution                 
to solve the problem as best as we could. With any product or system, there is always room for                   
improvement and innovation. Some improvements that we would make to Pet Connect would             
include using an RFID sensor with a stringer range, fixing the PCB design to have the LCD                 
screen working correctly, and developing a way for the system to recognize multiple pets going               
inside and outside. Despite this we are still able to call our project a success as we met the                   
requirements that we set in the beginning of the Senior Design process and delivered a               
functioning prototype. 
 
In the end, this has been a great experience for our group. We have been able to use the previous                    
lessons from our respective programs to complete both Senior Design 1 and 2. Coming from our                
different experiences we all had to learn how to work together, which is a great skill to have as                   
we enter the industry. Some of the group members have not worked on a project of this scale                  

123 



 

before. This gave us a learning experience unlike any other class in our previous coursework.               
This was beneficial as the Senior Design classes aim to create a work-like environment for               
students. The skills we gain from completing these courses and this project will carry on to our                 
careers after we graduate.  

11.0 Appendices 
In this appendices section we include a references section which consists of a list of the 
references used throughout this design paper. We then include a section for all of the usage 
permissions that we have obtained or are in the process of obtaining for the images used in our 
paper. 

11.1 References 

[AAA] AA_Good 1 (Senior Design Paper) Retrieved by July 25,2020. PDF: 
 
[ADK] Autodesk - PCB Basics for Electronics Retrieved by July 27, 2020. URL: 

https://www.autodesk.com/products/eagle/blog/printed-circuit-boards-10000-feet-
introduction-electronics-beginners/ 

 
[CAD] Power Plane PCB: Best Practices for Power Planes in Multi-board Design

 Retrieved by July 24, 2020 URL:  
Power Plane PCB: Best Practices for Power Planes in Multi-board Design 

 
[DATA] dataplicity. Stream live video from your Pi. URL:  

https://docs.dataplicity.com/docs/stream-live-video-from-your-pi 
 
[DEVL] Developers, Android Studio, Retrieved by June 13, 2020 URL:  

https://developer.android.com/studio 
 
[EBOT] EBOOT. 100 Pieces Clear LED Light Emitting Diodes Bulb LED Lamp, 5 mm 

(Multicolor).URL: 
https://www.amazon.com/Pieces-Clear-Light-Emitting-Diodes/dp/B06XPV4CSH
?th=1 

 
 

[EDGE] EDGELEC. EDGELEC 200pcs 10 Colors x 20pcs 5mm LED Light Emitting 
 Diode Assorted Kit 29mm Lead Clear Round Lamp White Red Blue Green Yellow 
UV Bright LEDs Bulb +300pcs Resistors for DC 6-12V Lights. URL:  
https://www.amazon.com/EDGELEC-200pcs-Emitting-Assorted-Resistors/dp/B0 
77X8P33G?th=1 

 
[FIRE1] Firebase Realtime Database. Structure Your Database. URL:  

https://firebase.google.com/docs/database/android/structure-data 

124 

https://www.autodesk.com/products/eagle/blog/printed-circuit-boards-10000-feet-introduction-electronics-beginners/
https://www.autodesk.com/products/eagle/blog/printed-circuit-boards-10000-feet-introduction-electronics-beginners/
https://resources.pcb.cadence.com/blog/2019-best-practices-for-power-planes-in-multi-board-pcb-design
https://docs.dataplicity.com/docs/stream-live-video-from-your-pi
https://docs.dataplicity.com/docs/stream-live-video-from-your-pi
https://developer.android.com/studio
https://www.amazon.com/Pieces-Clear-Light-Emitting-Diodes/dp/B06XPV4CSH?th=1
https://www.amazon.com/Pieces-Clear-Light-Emitting-Diodes/dp/B06XPV4CSH?th=1
https://www.amazon.com/EDGELEC-200pcs-Emitting-Assorted-Resistors/dp/B077X8P33G?th=1
https://www.amazon.com/EDGELEC-200pcs-Emitting-Assorted-Resistors/dp/B077X8P33G?th=1
https://www.amazon.com/EDGELEC-200pcs-Emitting-Assorted-Resistors/dp/B077X8P33G?th=1
https://firebase.google.com/docs/database/android/structure-data
https://firebase.google.com/docs/database/android/structure-data


 

 
[FIRE2] Firebase Realtime Database. Installation & Setup on Android. URL:  

https://firebase.google.com/docs/database/android/start 

[MYSQ] MySQL. MySQL Workbench. URL: https://www.mysql.com/products/workbench/ 

[PYRE] thisbejim. Pyrebase. URL: https://github.com/thisbejim/Pyrebase 

[REAC] React Native, Environment Set up, Retrieved by June 16, 2020 URL:  
https://reactnative.dev/docs/environment-setup 

 
[SOCK] Lucas PenzeyMoog. Understanding Socket Connections in Computer  

Networking. May 24, 2019. URL:  
https://medium.com/swlh/understanding-socket-connections-in-computer-network 
ing-bac304812b5c  

 
[SPAR] SparkFun. SparkFun 16x2 SerLCD - Black on RGB 3.3V. Retrieved by June, 16, 

2020. URL: https://www.sparkfun.com/products/14072 
 
[STAT] StatCounter Global Stats, Browser Market Share Worldwide, Retrieved by June  

14,2020 URL: https://gs.statcounter.com/os-market-share/mobile/worldwide 
 
[SUNF] Sunfounder. SunFounder LCD1602 Module with 3.3V Backlight. Retrieved by  

June 15, 2020 URL:https://www.sunfounder.com/lcd1602-module.html 
 
[UCTR] Uctronics. UCTRONICS 0.96 Inch OLED Module 12864 128x64 Yellow Blue 

SSD1306 Driver I2C Serial Self-Luminous Display Board for Arduino Raspberry
PI.URL:https://www.uctronics.com/index.php/uctronics-0-96-inch-oled-module-1
2864-128x64-yellow-blue-ssd1306-driver-i2c-serial-self-luminous-display-board-
for-arduino-raspberry-pi.html 

 
[WEBF] WebFX, Native App vs Mobile Web App: A quick comparison, Retrieved by Jun  

14, 2020 URL: 
https://www.webfx.com/blog/web-design/native-app-vs-mobile-web-app-coon/ 

 
 

11.2 Permissions 

Figure 16: Sunfounder LCD 1602 Display 
Status: Approved 

125 

https://firebase.google.com/docs/database/android/start
https://firebase.google.com/docs/database/android/start
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://github.com/thisbejim/Pyrebase
https://github.com/thisbejim/Pyrebase
https://reactnative.dev/docs/environment-setup
https://medium.com/swlh/understanding-socket-connections-in-computer-networking-bac304812b5c
https://medium.com/swlh/understanding-socket-connections-in-computer-networking-bac304812b5c
https://www.sparkfun.com/products/14072
https://www.sparkfun.com/products/14072
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.sunfounder.com/lcd1602-module.html
https://www.uctronics.com/index.php/uctronics-0-96-inch-oled-module-12864-128x64-yellow-blue-ssd1306-driver-i2c-serial-self-luminous-display-board-for-arduino-raspberry-pi.html
https://www.uctronics.com/index.php/uctronics-0-96-inch-oled-module-12864-128x64-yellow-blue-ssd1306-driver-i2c-serial-self-luminous-display-board-for-arduino-raspberry-pi.html
https://www.uctronics.com/index.php/uctronics-0-96-inch-oled-module-12864-128x64-yellow-blue-ssd1306-driver-i2c-serial-self-luminous-display-board-for-arduino-raspberry-pi.html
https://www.webfx.com/blog/web-design/native-app-vs-mobile-web-app-comparison/


 

 
Figure 17: Sparkfun SerLCD 
Status: Approved 

126 



 

 
 

 
Figure 20: MySQL Workbench Image 
Status: Approved 

127 



 

 

 
 
 

Figure 21/22: Google Firebase Console Image and Code Snippet 
Status: Approved 
 

128 



 

 

 

 
WAYZN Product Image 

129 



 

Figure 1: Similar product Wayzn 
Status: Approved 
 

 
 
 

 
Auto Slide Product Image 
Figure 2: Similar product Autoslide 
Status: Approved 
 

 

130 



 

 

 

UI of Native and Mobile Web App Image 
Figure 19: Compare UI develop from Native and Mobile Web App 
Status: Pending 

 

 

 

131 



 

Firgelli Product Image 
Figure 26: Classic Linear Actuator Permission 
Status: Pending 
 

 

 

Firgelli Product Image 
Figure 9: Linear Actuator  
Status: Pending 

 

 
 

132 



 

 
Home Depot - User License 
Figure 11: Traditional Barn Hook Lock for Sliding Door 
Status: Pending 
 

 

 

Grainger Product Image 
Figure 10: Modern Hook Lock for Sliding Door 
Status: Approved  

 
 
 

Olide Chinen Tech Product Image 
Figure 8: Slide Automatic Sliding Door Opener 
Status: Pending 

 

133 



 

 

 

 

  

134 



 

Raspberry Pi GPIO Pinout 
Figure 4: Raspberry Pi 4B GPIO Pinout  
Status: Approved 

 

 
 
ASUS Tinker Board GPIO 
Figure 5: ASUS Tinker Board Pinout 
Status: Pending 

 
 

  

135 



 

ODROID XU4 Board image 
Figure 6: ODROID XU4 Board Layout  
Status: Approved 

 

 
NanoPi NEO4 
Figure 7: NanoPi NEO4 Board Layout  
Status: Pending 

 
 
HC-SR04 sensor 
Figure 12: HC-SR04 Pinout  
Status: Pending 

 
 

HC-SR501 sensor 

136 



 

Figure 13: HC-SR501 Pinout  
Status: Approved 

 

 
 
RC522 module 
Figure 14: RC522 RFID Module Pinout  
Status: Pending 

 
 
PN5180 Block Diagram 
Figure 15: PN5180 Block Diagram  
Status: Approved 

137 



 

 

 

138 


